(Focus (Wiley)) 1st Edition
by Mohamed Wahbi (Author)
DisCSP (Distributed Constraint
Satisfaction Problem) is a general framework for solving distributed
problems arising in Distributed Artificial Intelligence.
A wide
variety of problems in artificial intelligence are solved using the
constraint satisfaction problem paradigm. However, there are several
applications in multi-agent coordination that are of a distributed
nature. In this type of application, the knowledge about the problem,
that is, variables and constraints, may be logically or geographically
distributed among physical distributed agents. This distribution is
mainly due to privacy and/or security requirements. Therefore, a
distributed model allowing a decentralized solving process is more
adequate to model and solve such kinds of problem. The distributed
constraint satisfaction problem has such properties.
Contents
Introduction
Part 1. Background on Centralized and Distributed Constraint Reasoning
1. Constraint Satisfaction Problems
2. Distributed Constraint Satisfaction Problems
Part 2. Synchronous Search Algorithms for DisCSPs
3. Nogood Based Asynchronous Forward Checking (AFC-ng)
4. Asynchronous Forward Checking Tree (AFC-tree)
5. Maintaining Arc Consistency Asynchronously in Synchronous Distributed Search
Part 3. Asynchronous Search Algorithms and Ordering Heuristics for DisCSPs
6. Corrigendum to “Min-domain Retroactive Ordering for Asynchronous Backtracking”
7. Agile Asynchronous BackTracking (Agile-ABT)
Part 4. DisChoco 2.0: A Platform for Distributed Constraint Reasoning
8. DisChoco 2.0
9. Conclusion
About the Authors
Mohamed
Wahbi is currently an associate lecturer at Ecole des Mines de Nantes
in France. He received his PhD degree in Computer Science from
University Montpellier 2, France and Mohammed V University-Agdal,
Morocco in 2012 and his research focused on Distributed Constraint
Reasoning.