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PREFACE 

This collection of exercises and problems may be used in many ways. I used 
it as a source of discussion topics in an activity-oriented course in linear 
algebra. The discussions were based principally on student presentations of 
solutions to the items included in this study guide and on the difficulties 
they encountered while trying to solve them. There were no assigned texts. 
Students were free to choose their own sources of information and were 
encouraged to consult books, papers, and websites whose writing style they 
found congenial, whose emphasis matched their interests, and whose prices 
Ht their budgets. 

The exercises, I hope, will be both interesting and helpful to an average 
student. Some are fairly routine calculations, while others require serious 
thought. The easy-to-grade fill-in-the-blank format makes them suitable for 
instructors to use in quizzes and assigned homework. The answers, given 
for all odd-numbered exercises, should be useful for self-directed learners. 

Most of the problems were designed to illustrate some issues that I 
regard as needing emphasis. Some of them are somewhat open-ended and 
are suitable for projects in classes where groups of students work together. 
For those instructors who favor the lecture method or are forced into it 
by having classes so large that class discussions or group projects are only 
remote fantasies, the problems herein may provide excellent topics for pre- 
sentation. As an added convenience for instructors the LaTeX code for all 
the exercises and problems will be made available on the World Scientific 
website. This should be helpful since some of these items are complicated 
and/or lengthy and would be a nuisance to retype for use on exams or 
homework assignments. 

xi 



xii Exercises and Problems in Linear Algebra 

In each chapter there is a short introductory background section that 
lists the topics on which the following exercises and problems are based. 
Since notation and terminology in linear algebra are not entirely uniform 
throughout the literature, these background sections are intended to Hx 
notation and provide "official" definitions and statements of important the- 
orems for the material that follows. It seems clear that students in a class 
communicate better if they are encouraged to use agreed-upon notations 
and terminology. 

One problem that I find with many introductory linear algebra texts 
is their conflation of material on vector spaces with that on inner product 
spaces. The subjects differ in both notation and terminology. Terms such as 
"direct sum" and "projection" mean one thing in one context and something 
quite different in the other. In the present study guide I try to keep the 
algebraic business about vector spaces (where words like "length", "angle" , 
"distance", and "perpendicular" make no sense) separate from the more 
geometric material on inner products. In this study guide vector spaces 
are dealt with in parts 2-4, while inner product spaces are the subject of 
parts 5-7. 

Among the dozens and dozens of linear algebra texts that have appeared, 
two that were written before "dumbing down" of textbooks became fash- 
ionable are especially notable, in my opinion, for the clarity of their authors' 
mathematical vision: Paul Halmos's Finite-Dimensional Vector Spaces [4] 
and Hoffman and Kunze's Linear Algebra 161. Some students, especially 
mathematically inclined ones, love these books, but others find them chal- 
lenging. For students trying seriously to learn the subject, I recommend 
examining them. For those more interested in applications, both Elemen- 
tary Linear Algebra: Applications Version 111 by Howard Anton and Chris 
Rorres and Linear Algebra and its Applications 191 by Gilbert Strang are 
loaded with applications. Students who find the level of many of the cur- 
rent beginning linear algebra texts depressingly pedestrian and the endless 
routine computations irritating, may enjoy reading some more advanced 
texts. Two excellent ones are Steven Roman's Advanced Linear Algebra 181 
and William C. Brown's A Second Coarse in Linear Algebra 121 . 

Concerning the material in these notes, I make no claims of original- 
ity. While I have dreamed up many of the items included here, there are 
many others which are standard linear algebra exercises that can be traced 
back, in one form or another, through generations of linear algebra texts, 



Preface xiii 

making any serious attempt at proper attribution quite futile. If anyone 
feels slighted, please contact me. 

There will surely be errors. I will be delighted to receive corrections, 
suggestions, or criticism at 

erdmanj@comcast.net 
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Chapter 1 

ARITI-Il\/IETIC OF la/IATRICES 

1.1 Background 

Topics: addition, scalar multiplication, multiplication of matrices, inverse 
of a nonsingular matrix, Gaussian elimination. 

Definition 1.1.1. Two square matrices A and B of the same size are said 
to COMMUTE if AB = BA. 

Definition 1.1.2. If A and B are square matrices of the same size, then 
the COMMUTATOR (or LIE BRACKET) of A and B, denoted by [A, B], is 
defined by 

[A»B] = A B - B A .  

by (bit . 
by [did] 

th  

The matrix A itself may be denoted by [ a ]  

Notation 1.1.3. If A is an m X n matrix (that is, a matrix with m rows and 
n columns), then the element in the it row and the nth column is denoted 

' _1j=1 or, more simply, 
. In light of this notation it is reasonable to refer to the index i in the 

expression (L as the ROW INDEX and to call j the COLUMN INDEX. When 
we speak of the "value of a matrix A at ( i ,  j)," we mean the entry in the 

row and nth 

'al 

column of A. Thus, for example, 

4 
3 

5 

A 

1 

7 
01 

X is a 4 2 matrix and a31 = 7. 

3 
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Notation 1.1.4. n o  The n identity matrix is denoted by In or, more 
frequently, just by I. 

Definition 1.1.5. [Um] A matrix A = is UPPER TRIANGULAR if = 0 (L 

whenever i > j . 
Definition 1.1.6. The TRACE of a square matrix A, denoted by tr A, is 
the sum of the diagonal entries of the matrix. That is, if A = [Ge] is an 
n X n matrix, then 

t1°A II 

'al 

U / j j  
j 1 

Definition 1.1.7. The TRANSPOSE of an m X n matrix A = [ a ]  is the 
matrix At = [ a ]  obtained by interchanging the rows and columns of A. 
The matrix A is SYMMETRIC if At = A. 

Proposition 1.1.8. If A 
then (A8g = BtAt.  

is an m 77, matrix and B is an 77, p matrix, X X 

1.2 Exercises 

(1) Let A 

3 0 

0 
3 

1 

1 
0 

1101 

2 
-1 

7 B 
3 
2 

1 2 
3 1 
0 2 
4 1 

7 and C 

(a) Does the matrix D ABC exist? If then so, $34 

(b) Does the matrix E BAC exist? If so, then 622 

(c) Does the matrix F BCA exist? If so, then f43 

(d) Does the matrix G ACB exist? If so, then 931 

(e) Does the matrix H CAB exist? If SO, then h21 

(f) Does the matrix J CBA exist? If SO, then .j13 
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1 
0 [ am and C = AB. Evaluate the following. 

(a) A37 (b) B63 

IcI B138 (d) C42 

(3) Let A 

Note: If M is a matrix My is the product of p copies of M. 

1 31 
,J . 1 Find numbers and d such that A2 = -I. C 

Answer: c = and d = 

(4) Let A and B be symmetric n n-matrices. Then [A,B] = [B,X], 
where X = . 

(5) Let A, B, and C be 77, X n matrices. Then [A, B]C+ B[A, C] = [X, Y], 
where X = and Y = . 

X 

(6) Let A 1/3 
A Find numbers and d such that A2 = 0. Answer: c 

C and d 

1 3 2 
(7) Consider the matrix a 6 2 where a is a real number. 

0 9 5 

(a) For what value of a will a row interchange be required during 
Gaussian elimination? Answer: a = . 

(b) For what value of a is the matrix singular? Answer: a = 

(8) Let A 

and M 
W41 

1 0 
0 3 1 
2 4 0 

- 3 1 - 1  
i 3A3 

-1 2 1 2 
-1 3 -1 B :  
3 7 0 -2 
2 4 

- 5(Bc)2. Then 
1 

7 

W14 

l 3 2 
C 

0 5 1 7 

and 
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n X kg) If A is an 
4A2 + 3A - 51" 

n matrix and it satisfies the equation A3 - 
0, then A is nonsingular and its inverse is 

X (10) Let A, B, and C be n n matrices. Then HA78]7C] -|- HB, CLA] -I- 

HC, AL B] = X, where X 

( I I )  Let A, B, and C be n 
where X = 

X 77, matrices. Then [A, C] -|- [B, C] = [X, Y], 
and Y = . 

(12) Find the inverse of 

1 
1 
4 
1 
3 
1 
2 

0 
1 
1 
3 
1 
2 

0 0 
0 0 
1 0 

1 1 
2 

. Answer: 

(13) Suppose that A and B are symmetric n X n matrices. In this exercise 
we prove that AB is symmetric if and only if A commutes with B. 
Below are portions of the proof. Fill in the missing steps and the 
missing reasons. Choose reasons from the following list. 

H 
H 
H 

(Hl) ypothesis that A and B are symmetric. 
($2) ypothesis that AB is symmetric. 
($3) ypothesis that A commutes with B. 
(Dll Definition of commutes. 
(D2l Definition of symmetric. 

(T) Proposition 1.1.8. 

Proof. Suppose that AB is symmetric. Then 

AB 
BW 

(reason: (H2) and 
(reason: ) 

(reason: (D2) and 

So A commutes with B (reason: . 
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Conversely, suppose that A commutes with B. Then 

(A83t i (reason: (T)) 
= BA (reason: and 

(reason: 

Thus AB is symmetric (reason: 

and 

1.3 Problems 

(1) Let A be a square matrix. Prove that if A2 is invertible, then so is A. 
Hint. Our assumption is that there exists a matrix B such that 

A28 = BAR = I _ 
We want to show that there exists a matrix C such that 

AC i C A  i I . 
Now to start with, you ought to find it fairly easy to show that there 
are matrices L and R such that 

LA = AR = I . (*) 

A matrix L is a LEFT INVERSE of the matrix A if LA = I; and R is 
a RIGHT INVERSE of A if AR = I. Thus the problem boils down to 
determining whether A can have a left inverse and a right inverse that 
are deferent. (Clearly, if it turns out that they must be the same, then 
the C we are seeking is their common value.) So try to prove that if 
(*) holds, then L = R. 

(2) Anton speaks French and German; Geraldine speaks English, French 
and Italian, James speaks English, Italian, and Spanish, Lauren speaks 
all the languages the others speak except French, and no one speaks 
any other language. Make a matrix A = [ a ]  with rows representing 
the four people mentioned and columns representing the languages they 
speak. Put all = 1 if person i speaks language j and as = 0 otherwise. 
Explain the significance of the matrices AAt and AtA. 

(3) Portland Fast Foods (PFF), which produces 138 food products all made 
from 87 basic ingredients, wants to set up a simple data structure from 
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which they can quickly extract answers to the following questions: 
(a) How many ingredients does a given product contain? 
(b) A given pair of ingredients are used together in how many products? 
(c) How many ingredients do two given products have in common? 
(d) In how many products is a given ingredient used? 

In particular, PFF wants to set up a single table in such a way that: 
(i) the answer to any of the above questions can be extracted easily 

and quickly (matrix arithmetic permitted, of course); and 
(ii) if one of the 87 ingredients is added to or deleted from a product, 

only a single entry in the table needs to be changed. 

Is this possible? Explain. 

(4) Prove Proposition 1.1.8. 

A(0) 

(5) Let A and B be 2 X 2 matrices. 
(a) Prove that if the trace of A is 0, then A2 is a scalar multiple of the 

identity matrix. 
(b) Prove that the square of the commutator of A and B commutes 

with every 2 X 2 matrix C. Hint. What can you say about the trace 
of [A, B1? 

(c) Prove that the commutator of A and B can never be a nonzero 
multiple of the identity matrix. 

(6) The matrices that represent rotations of the any-plane are 

- sin el 
cos 0 . 

cost 
sin 0 

(a) Let X be the vector (-1, 1), 0 = 371/4, and y be A(H) acting on X 

(that is, y = A(@lxtl. Make a sketch showing x, y, and 0. 
(b) Verify that A(01)A(02) = A(01 -|- 92). Discuss what this means 

geometrically. 
(c) What is the product of A(0) times A(-9)? Discuss what this means 

geometrically. 
(d) Two sheets of graph paper are attached at the origin and rotated 

in such a way that the point (1, 0) on the upper sheet lies directly 
over the point (-5/13, 12/13) on the lower sheet. What point on 
the lower sheet lies directly below (6, 4) on the upper one? 
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(Y) Let 

<c II 

a 02 

a 
0 
0 0 
0 0 
0 0 
0 0 

0 
0 
0 

as 
2 a 

a 
0 
0 

a.l 
as 
G2 

a 
0 

The goal of this problem is to develop a "calculus" for the matrix A. To 
start, recall (or look up) the power series expansion for l 1 I .  Now see 

if this formula works for the 77, X m matrix A by first computing (1-A)-1 
directly and then computing the power series expansion substituting A 
for as. (Explain why there are no convergence difficulties for the series 
when we use this particular matrix A.) Next try to define ln(I +A)  and 
eA by means of appropriate series. Do you get what you expect when 
you compute en(I+A)? Do formulas like eAeA = e2A hold? What about 
other familiar properties of the exponential and logarithmic functions? 

Try some trigonometry with A. Use series to define sin, cos, tan, 
arctan, and so on. Do things like tan(arctan(A)) produce the expected 
results? Check some of the more obvious trigonometric identities. 
(What do you get for sin2 A + cos2 A - I? Is cos(2A) the same as 
cos2 A - sin2 A?) 

A relationship between the exponential and trigonometric functions is 
given by the famous formula eia: = cos x -|- i sin cc. Does this hold for A? 

Do you think there are other matrices for which the same results 
might hold? Which ones? 

(8) (a) Give an example of two symmetric matrices whose product is not 
symmetric. 
Hint. Matrices containing only 0's and l's will suffice. 

(b) Now suppose that A and B are symmetric n X n matrices. Prove 
that AB is symmetric if and only if A commutes with B. 

Hint. To prove that a statement P holds "if and only if" a state- 
ment Q holds you must first show that P implies Q and then show 
that Q implies P. In the current problem, there are 4 conditions to be 
considered: 

(i) At = A (A is symmetric), 
(ii) Bt = B (B is symmetric), 

(iii) (A8g = AB (AB is symmetric), and 
(iv) AB = BA (A commutes with B). 
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Recall also the fact given in 
(v) Proposition 1.1.8. 

The first task is to derive (iv) from (i), (ii), (iii), and (v). Then try to 
derive (iii) from (i), (ii), (iv), and (v). 

1.4 Answers to Odd-Numbered Exercises 

( l )  (a) Yes, 
(b) no, - 
(c) yes, -45 

142 

(d) no, - 
(e) yes, -37 
lf no, - 

(3) -6, -1 

(5) A, BC 

(Y) (a) 2 

PA + 31%) 

(b) -4 

(9) EW - 
( I I )  A -|- B, C 

(13) (AB);, D2, T ,  BA, H1, D1, BtAt,  H1, D2, AB, H3, D1, D2 (Note: the 
order of H1 and D2 and the order of H3 and D1 may be reversed.) 



Chapter 2 

ELEMENTARY la/IATRICES; 
DETERMINANTS 

2.1 Background 

Topics: elementary (reduction) matrices, determinants, Gauss-Jordan 
reduction. 

The following definition says that we often regard the effect of multi- 
plying a matrix M on the left by another matrix A as the action of A 
on M .  

to produce the matrix N if N = AM. For example the matrix 

Definition 2.1.1. We say that the matrix A ACTS ON the matrix M 
0 1 
l 0 

acts on any 2 X 2 matrix by interchanging (swapping) its rows because 
0 l Cl b d 
l 0 d Cl b { H 1 { 1 C 

C 

[ 1 

Definition 2.1.2. We will say that an operation (sometimes called scaling) 
that multiplies a row of a matrix (or an equation) by a nonzero con- 
stant is a ROW OPERATION OF TYPE I. An operation (sometimes called 
swapping) that interchanges two rows of a matrix (or two equations) is a 
ROW OPERATION OF TYPE II. And an operation (sometimes called pivoting) 
that adds a multiple of one row of a matrix to another row (or adds a mul- 
tiple of one equation to another) is a ROW OPERATION OF TYPE III. 

11 
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Notation 2.1.3. We adopt the following notation for elementary matrices 
that implement type I row operations. Let A be a matrix having n rows. 
For any real number T go 0 denote by Mj(r)  the n X n matrix that acts on 
A by multiplying its jth row by r. (See exercise 1.) 

Notation 2.1.4. We use the following notation for elementary matrices 
that implement type II row operations. (See Definition 2.l.2.) Let A be a 
matrix having n rows. Denote by P the n X n matrix that acts on A by 
interchanging its ith and jth rows. (See exercise 2.) 

Notation 2.1.5. And we use the following notation for elementary matri- 
ces that implement type III row operations. (See Definition 2.l.2.) Let A 
be a matrix having n rows. For any real number r denote by E (T) the 
n X n matrix that acts on A by adding T' times the jth row of A to the i th  

row. (See exercise 3.) 

Definition 2.1.6. If a matrix B can be produced from a matrix A 
by a sequence of elementary row operations, then A and B are ROW 
EQUIVALENT. 

Some Facts about Determinants 

Proposition 2.1.7. Let n 6 N and Mnxn be the collection of all 
matrices. There is exactly one function 

n X n 

det : M n x n  ->R:A»->detA 

which satisfies 

(c) 

(a) det In = 1. 
(b) If A 6 Mnxn and A' is the matrix obtained by interchanging two rows 

of A, then det A' = - det A. 
If A 6 la/Inxn, c 6 R, and A' is the matrix obtained by multiplying each 
element in one row of A by the number e, then det A' = edet A. 

ld) IfA 6 non,  e 6 R, and A' is the matrix obtained from A by multi- 
plying one row of A by e and adding it to another row of A (that is, 
choose i and j between 1 and n with i go j and replace ask by ask -l-eaik 
for 1 < k _< n),  then det A' = det A. 

M 

Definition 2.1.8. The unique function det : M n x n  -> R described above 
is the n X n DETERMINANT FUNCTION. 
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Proposition 2.1.9. If A = 
detA = a; i A  6 2X27 then 

[a] for a 6 R (that is, if A 6 M1X 1), then 

det A = a11a22 - 012021. 

Proposition 2.1.10. I f A , B  M 6 'nX'r17 then det(AB) = (det A)(det B) . 
Proposition 2.1.11. If A 6 Mnxn,  then det At = detA. (An obvious 
corollary of this: in conditions (b), (c), and (d) of Proposition 2.1.7 the 
word "columns " may be substituted for the word "rows".) 

Definition 2.1.12. Let A be an n 
ask,  denoted by Mjk,  
which results from the deletion of the J 
COFACTOR of the element ask , 

X n matrix. The MINOR of the element 
is the determinant of the (n - 1) X (n - 1) matrix 

-to row and kth column of A. The 
denoted by Cock is defined by 

Cock := I-1lJ+Im 
j e .  

Proposition 2.1.13. IfA M 

In 

6 n x n  and 1 _<j _<n, then 

TL 

det A I GMC# . 
k=1 

This is the (LAPLACE) EXPANSION of the determinant along the jth 

light of 2.1.11, it is clear that expansion along columns works as well 
as expansion along rows. That is, 

'I"O'l1}. 

TL 

det A t l j k ( j k  
j 1 

for any k between 1 and n. This is the (LAPLACE) EXPANSION of the deter- 
minant along the nth column. 

X Proposition 2.1.14. An n 
detA go 0 .  If A is invertible, then 

77, matrix A is 'invertible if and only if 

A-1 = (deAl-let 

where C = [Cock] is the matrix of eofaetors of elements of A. 

Definition 2.1.15. A square matrix is SINGULAR if its determinant is 
zero. Otherwise it is NONSINGULAR. 
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2.2 Exercises 

(1) Let A be a matrix with 4 rows. The matrix M3(4) that multiplies 

the 3rd row of A by 4 is . (See 2.1.3.) 

(2) Let A be a matrix with 4 rows. The matrix P24 that interchanges 

the 2nd and 4th rows of A is . (See 2.1.4.) 

(3) Let A be a matrix with 4 rows. The matrix E23 (-2) that adds -2 times 

the 3rd row of A to the 2nd row is 
l 
l 

1 
• (See 2.1.5.) 

(4) Let A be the 4 4 elementary matrix E43(-6). Then A11 X 

and A-9 

B (5) Let be the elementary 4 4 matrix P24. Then B-9 X 

and B10 

(6) Let C be the elementary 4 4 matrix Mg(-2) .  Then C4 X 

and C 3 

(7) Let A 

Then 623 

1 
0 
2 
1 

2 
1 

1 

3 
1 
0 

2 -3 
and 632 

and B I P23E34(-2lM3l-2lE42ll)P14A. 
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(8) Elementary row operations are performed on a 4 X 4 matrix A to bring 
it to upper triangular form. The result is 

P24E43 M3(5)E42(2)E31(1)E21(3)A 

1 2 
0 -1 
0 0 
0 0 

0 
0 1 

2 
0 10 

Then the determinant of A is 
(9) The system of equations: 

2 y + 3 z = 7  
x + y - z = - 2  
- c v - l - y - 5 2 : 0  

coefficient matrix A 

elementary 3 
reduction. 

is solved by applying Gauss-Jordan reduction to the augmented 
0 2 3 7 
1 1 -1 -2 Give the names of the 

-1 1 -5 0 
X 3 matrices Xl, . . . ,X8 that implement the following 

A X1> 

X3> 

X5> 

X7> 

1 
0 

1 1 2 
2 3 

1 5 
7 
0 1 

X2> 
1 1 
0 2 
0 2 

1 2 
3 
6 2 

7 

1 1 
0 2 
0 0 

1 1 -1 
0 2 0 
0 0 1 

1 2 
3 
9 9 

7 X4> 
1 1 -1 
0 2 3 
0 0 1 

A 
A A A A 

2 
4 X6> 

1 1 
0 1 
0 0 

0 
1 1 

7 
1 

2 
1 

1 1 0 -1 
0 1 0 2 
0 0 1 1 

X8> 
1 0 0 
0 1 0 
0 0 1 

3 
2 
1 

Answer: XI = 
X5 7 

7 X2 
X6 7 

7 X3 
X7 7 

7 X4 
7 

X8 
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(10) Solve the following equation for .CU : 

3 
2 
3 

det 
27 
3 
1 

33 

0 
4 
6 

0 

7 0 6 2 
1 8 0 0 
8 3 1 2 

5 0 0 3 
0 2 1 1 
1 3 4 0 

co I I Answer : as 

(11) Let A 
0 
0 l LE 

1] • 

l Find A-1 using the technique of augmenting 
0 
2 4 
2 3 

A by the identity matrix I and performing Gauss-Jordan reduction 
on the augmented matrix. The reduction can be accomplished by the 
application of five elementary 3 X 3 matrices. Find elementary matrices 
Xl, X2, and X3 such that A-1 I X3E13(-3)X2M2(l/2)X1I. 

(a) The required matrices are XI 
Eik ( -2 )  where j = and k 

PM where 'i 
and X3 7 

X2 I ' 
e E12 la") when 

T' 

(be And then A-1 

1 
t t 1 

(21) det 

(b) det 2 

4 

1 

t t2 t3 
t2 

(12) det to t 1 t 

t3 t2 t 1 
p = . 

(13) Evaluate each of the following determinants. 

6 9 39 49 
5 7 32 37 _ 
3 4 4 4 
1 1 1 1 
1 0 1 
1 -1 2 

-1 3 
17 0 -5 

1 
0 
1 

l - a(t))P where a(t) and 
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(c) det 

13 3 
0 0 
1 0 
3 0 

8 
4 

7 
2 

6 
0 
2 

0 

(14) Let M be the matrix 

5 4 -2 
5 7 -1 
5 7 6 
5 7 1 

3 
8 

10 
9 

(a) The determinant of M can be expressed as the constant 5 times 
3 1 5 

the determinant of the single 3 X 3 matrix 3 
3 

(b) The determinant of this 3 X 3 matrix can be expressed as the V j>ll constant 3 times the determinant of the single 2 X 2 matrix 

(c) The determinant of this 2 X 2 matrix is 
(d) Thus the determinant of M is 

(15) Find the determinant of the matrix 
7 

1 1 1 

1 
1 
1 

1 
1 
1 
1 
1 

1 0 7 
6 
5 
4 

5 
3 
3 
2 

2 
2 

5 
5 

• Answer: 

(16) Find the determinants of the following matrices. 

<c II 

-73 78 24 
92 66 25 

-80 37 10 
and B 

-73 78 24 
92 66 25 

-80 37 10.01 

Hint. Use a calculator (thoughtfully). Answer: det A 
det B = . 

(17) Find the determinant of the following matrix. 

and 

283 5 or 
3136 56 5 
6776 121 11 
2464 44 4 

X 347.86 101583 
cos(2.7402) 

5 
2 

Hint. Do not use a calculator. Answer: 
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(18) Let A 

0 
0 
1 
2 

1 

1 
2 

0 
0 
0 

0 
1 
2 

1 
2 

1 
2 

1 
2 
1 
2 

0 
1 
2 

. We find A-1 using elementary row 

operations to convert the 4 8 matrix [A X IN] to the matrix 

114 • A-11 . 
Give the names of the elementary 4 X 4 matrices Xl, . . . ,X11 that 
implement the following Gauss-Jordan reduction and Iill in the missing 
matrix entries. 

0 

0 

I I 
on

-»
 

0 

0 

1 
2 

1 
2 

1 
2 

1 

0 

0 0 0 

1 0 0 

1 
2 0 1 

2 0 0 0 1 0 

1 0 1 
2 

1 
2 0 0 0 

XI > 

1 

0 

0 

0 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 0 1 

2 0 

0 

N
IH

 
I I 0 1 

2 

X2 
> 

1 

0 

0 

0 

1 
2 

1 
2 

1 
2 

1 
2 

0 

0 

0 

I I 
N

JI
I-

\ 

3 
4 

0 

1 
4 

1 
2 

X3 > 

1 

0 

0 

I I 
N

JI
I-

\ 

1 
2 

0 

1 
2 

1 
2 

0 0 3 
4 

1 
4 

0 0 1 
2 

1 
2 
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1 0 1 
2 

1 
2 

X4 
> 

0 1 0 

0 0 

_0 0 

3 
4 

1 
2 

1 
4 

1 
2 

1 0 1 
2 

1 
2 

X5 0 1 0 

1 

1 
2 

1 
3 

1 
2 

1 
2 

1 
2 

X6 
> 

0 1 0 

0 0 

_0 0 

1 

0 

1 
3 

1 
3 

X7 
> 

1 la 0 

1 

1 
2 

0 

1 
2 

I 
0 0 1 0 

0 0 0 1 
3 

1 0 1 
2 

1 
2 

X8 0 1 0 
> 

0 0 1 0 

_0 0 0 1 
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1 
2 1 0 1 

2 

X9 
> 

0 1 0 0 

0 0 1 0 

_0 0 0 1 

1 0 0 1 
2 

X10 0 1 0 0 
> 

0 0 1 

0 0 0 

0 

1 

1 0 0 0 

X11 
> 

0 1 0 0 

0 0 1 0 

0 0 1 

Answer: X1 = 
X5 7 

7 X2 
X6 7 

7 X3 
7 X7 

7 X4 
7 

II X9 7 X10 7 X11 

(19) The matrix 

m II 

1 

1 
2 
1 
3 
1 

-4  

1 
2 
1 
3 
1 
4 
1 
5 

1 
3 
1 
4 
1 
5 
1 
6 

1 
4 
1 
5 
1 
6 
1 
7 - 

is the 4 X 4 HILBERT MATRIX. Use Gauss-Jordan reduction to 
compute K = H-1. Then K44 is (exactly) 
ate a new matrix H' by replacing each entry in H 
Imation to 3 decimal places. (For example, replace by 0.167.) 

. Now, cre- 
by its approx- 

1 
E 
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Use Gauss-Jordan reduction again to find the inverse K' of H'. Then 
KQ4 is . 

(20) Suppose that A is a square matrix with determinant 7. Then 

(a) det(P24A) = . 
(b) d€tlE23l-4lAl = 
(C) det(m3(2)A) 1 

2.3 Problems 

X 

(1) For this problem assume that we know the following: If X is an m X m 
matrix, if Y is an m X n matrix and if 0 and are zero and identity 

Y 11 X 
I 

0 
matrices of appropriate sizes, then det = det X. 

Let A be an m n matrix and B be an n X m matrix. Prove carefully 
that 

det det AB . 

Hint. Consider the product 0 
B 

I 
I I ] [B "] • 

(2) Let A and B be n X n-matrices. Your good friend Fred R. Dirndl believes 
that 

det E in det(A + B) det(A - B). 

He offers the following argument to support this claim: 

det E in det(A2 - BQ) 

det[(A -|- B)(A - B)] 
det(A + B) det(A - B). 

(a) Comment (helpfully) on his "proof". In particular, explain care- 
fully why each of the three steps in his "proof" is correct or incor- 
rect. (That is, provide a proof or a counterexample to each step.) 

(b) Is the result he is trying to prove actually true? 
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Hint: Consider the product I 
0 BH ] B A -|- B 

A 0 

(3) Let J: be a fixed real number that is not an integer multiple of 7T. For 
each natural number n let ATL = [ask] be the n X n-matrix defined by 

0 
I 

Clack 

0, for lj -kl  
for lj - / |  

2 cos so, for j = k. 
1, 

> 1 
1 

-|- 1 .CU 
(n  . Hint. For each integer n let Dn Show that det An = sin 

det ATL and prove that sln .CU 

Dn+2 - 2DTL+1 cosec + Dn = 0. 

(Use mathematical induction.) 

2.4 Answers to Odd-Numbered Exercises 

(l) 

(3) 

4 

1 0 0 0 
0 1 0 0 
0 0 0 
0 0 0 1 

1 0 0 
0 1 
0 0 1 
0 0 0 

0 
0 
0 
1 

(5) 

1 0 0 0 
0 0 0 1 
0 0 1 0 
0 1 0 0 

7 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

(Y) -8, -1 

(9) P12, E31(1), E32(-1), mg(-5),  E23(-3)» my(%), E13(1)» E12(-ll 
(11) (a) 3, 2, 3, -2 

r 1 _ 1  

(be 
1 0 OJ 
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(13) 100, 0, -72 

(15) -10 

(17) 6 

(10) 2800, -1329.909 
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Chapter 3 

VECTOR GEOMETRY IN n 

3.1 Background 

Topics: inner (dot) products, cross products, lines and planes in 3-space, 
norm of a vector, angle between vectors, the law of sines. 

Notation 3.1.1. There are many more or less standard notations for the 
inner product (or dot product) of two vectors X and y. The two that we 
will use interchangeably in these exercises are X y and (x, y). 

Definition 3.1.2. Rn If X is a vector in then the NORM (or LENGTH) of 7 

X is defined by 

IIxII i V//<X7X)° 

Definition 3.1.3. Let X and y be nonzero vectors in Rn. Then &(x, y), 
the ANGLE between X and y, is defined by 

(x, y) 
IIxII llyll <(x, y)  arccos 

Theorem 3.1.4 (Cauchy-Schwarz inequality) . and CI/I"€ vectors I x  y 
in R" then 7 

l(x,y)I S IIxII llyll~ 
(We will often refer to this just as the Schwarz inequality.) 

= (a:1,a:2,a:3l and 
R3, then their CROSS PRQDUCT, denoted by 
33392, $391 - 33193, l31Y2 - SlizYll- 

Definition 3.1.5. If X y 
X X 

(y1,y2,y3) are vectors in 
y, is the vector (:l22y3 - 

25 
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3.2 Exercises 

(1) The angle between the vectors (1,0, -l ,3) and (1, \/§, 3, -go 
air where Cl i • 

R4 in is 

(2) Find the angle H between the vectors 
(2, -1,0, \/5, 2, 1) in R6. Answer: H = 

X 1 (3,-1, ,0,2,1) and y 

kg) If CL17 ,an > 0, then 

( ) j 1 I" ) 
TL 

a -  > 112. J as 
k=1 

X 

The proof of this is obvious from the Cauchy-Schwarz inequality when 
we choose the vectors X and y as follows: 

and y = . 

(4) Find all real numbers a such that the angle between the vectors 2i -I- 
2j -|- (Q - 2)k and Zi -|- (Q - and Qlj -|- 2k is g. Answer: a 

(5) Which of the angles (if any) of triangle ABC, with A = (1, -2,0), 
B = (2, 1, -2), and C = (6, -1, -3), is a right angle? Answer: the 
angle at vertex 

(6) The hydrogen atoms of a methane molecule (CH4) are located at 
(0,0,0), (1,1,0), (0,1,1), and (1,0,1) while the carbon atom is at 
(5, 5, 8 Find the cosine of the angle H between two rays starting 
at the carbon atom and going to different hydrogen atoms. 
Answer: casH = 

d, (7) If a, b, f then c, e, G R ,  

lad+be+cfl S \ a2-l-62-l-c2 d2 -I- 62 -l- f2. \ 

7 

The proof of this inequality is obvious since this is just the 
Cauchy-Schwarz inequality where an = l , , ) and y = 
( )~ 7 

(8) The volume of the parallelepiped generated by the three vectors 
2 j - k , j + k , a n d 3 i - j - l - 2 k i s  • 

i -I- 
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(9) The equations of the line containing the points -1, 4) and (7, 9, 10) (3, 
are 

where b and k 

at - 3 _ y - j _ Z - k 
2 - b - c 

i 7 C i 7 i i • 

(10) The equations of the line containing the points (5, 2, -1) and (9, -4, 1) 
are 

7 

where Cl , C 

.CU Z h _ y - 2  k 
a - -3 c 

h =  a n d s  7 7 

parallel to the line 

y J + 33 Z 
b 

(11) Find the equations of the line containing the point (l,  0, -1) that is 
zz:-4 _ 2 y - 3  _ 3 z - 7  

h 2 - 5 1 ` 6 ' 

Answer: CL b = 4 where a = 
, and _7 = . 

(12) The equation of the plane containing the points (0, -1, 1), (1, 0, 2), and 
( 3 , 0 , 1 ) i s a : + b y + c z = d w h e r e b =  , a n d d =  . 

(13) The equation of the plane which passes through the points (0, -1, -1 
(5,0,1),and (4,-1,0)is as:-l-by+cz= 1 wheres= , b =  
and C i • 

, C 

7 7 h 

7 

7 

u 

u 

v 
v 

(14) The angle between the planes 41: +42 - 16 = 0 and -2x -|- 2y - 13 = 0 
is n' where a = and b = 

(15) Suppose that e R3 is a vector that lies in the first quadrant of the 
my-plane and has length 3 and that v e R3 is a vector that lies along 
the positive z-axis and has length 5. Then 

(21) 1111 X VII i ; 
(b) the as-coordinate of X is 0 (choose <,  >,  or =); 
(c) the y-coordinate of X is 0 (choose <,  >,  or =); and 
(d) the z-coordinate of X v is 0 (choose <, >, or =). 

(16) Suppose that and v are vectors in a vector space both of length 2v'2 
and that the length of u - v is also QI. Then llu + vll = 
and the angle between u and v is 

u 
u 
u 

(17) b If a = 3 i + 4 j + l 2 k ,  = 3 i + 4 j - l 2 k , a n d c =  i 
c a  b . , X 

1 
12 +- then j k 1 

16 7 
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3.3 Problems 

(1) Show that if a, b, 

(2) Show that if a l ,  . 

c >  2 < 0, then go + Tb + c) as + §b2 + £@2 
0 and 2kz1 wk = 1, then 7 ana w 1 , . . . , w n  > 

(~ ) k 1 

2 in 

< 2 Clkwk _ Cly W k .  

k=1 

OO OO 

(3) Prove that if (a1,a2, . . .) is a sequence of real numbers such that the 

series k 
k=1 k=1 

You may find the following steps helpful in organizing your solution. 

(i) First of all, make sure that you recall the difference between a 

sequence of numbers (el, . . .) and an infinite series 

2 . 
cl converges, then the serles cl converges absolutely. 

1 

C2 7 

OO 

co, 
k 1 

(ii) The key to this problem is an important theorem from third term 
Calculus: 

A nondecreasing sequence of real numbers converges 

if and only if it is bounded. (*) 

(Make sure that you know the meanings of all the terms used 
here.) 

(iii) The hypothesis of the result we are trying to prove is that the 
OO 

series as:2 converges. What, exactly, does this mean? 
'al 

(iv) For eakczhl natural number let in n 2 
as 

k 1 

Rephrase (iii) in 

(viii For each natural number n let 

terms of the sequence (b'fl). 
(v) Is the sequence (b'fl) nondecreasing? 

(vi) What, then, does I say about the sequence (b,,)? 
n 1 

= Z p. What do we know 
k=1 

about the sequence (eTL) from third term Calculus? What does 
(*) say about the sequence (en)? 

Cn 

(viii) The conclusion we are trying to prove is that the series 
converges absolutely. What does this mean? 

OO 1 
Clk 

k 1 k  
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b 

k 

b 

n 1 
(ix) For each natural number n let s'fl = Z -l0kl~ Rephrase (viii) in 

terms of the sequence (sTL). k=1 

(x) Explain how for each n we may regard the number sTL as the dot 
product of two vectors in R" . 

(xi) Apply the Cauchy-Schwarz inequality to the dot product in (x) . 
Use (vi) and (vii) to establish that the sequence (sTL) is bounded 
above. 

(xii) Use (*) one last time keeping in mind what you said in (ix) . 

(4) Let a and b be vectors in R3. Without using the components of a and 
prove that Ha X 112 = uau2llbu2 - (a,b)2 • 

(5) Let a, b, and C be vectors in IR3. 
(a) Prove that if a + b + c  = 0, then a x  b = 
(b) Use part (a) to prove the law of sines. 

X b C a. C o  X 

3.4 Answers to Odd-Numbered Exercises 

(l) 

(3) w V5-2» • 

(5) B 

(7) a, b, c, d, e, 

(9) 5, 3, -1, 4 
f 

7 W )  
1 

7 7 

(11) 4, 5, 1, 0 

(13) 1, 3, -4 

(15) (a) 15 
(be 
(c) 
(d) 1 

(17) -18 

> 
< 
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Chapter 4 

VECTOR SPACES 

4.1 Background 

Topics: real and complex vector spaces, vectors, scalars. 

CAUTION. In the following definition IF may be taken to be an arbitrary 
field. In this study guide, however, we will deal exclusively with two cases 
only, II" = R (the field of real numbers) and IF = (C (the field of complex 
numbers, which, if you are not already familiar with it, is introduced in 
Chapter 16). 

X 

0 0 

Definition 4.1.1. A VECTOR SPACE is a set V together with operations 
of addition and scalar multiplication that satisfy the following axioms: 

(1) i x ,  y e  V, thenx-I-y e V; 
(2) (x + y) + z = X -|- (y + z) for every x, y, z e V (associativity) ; 
(3) there exists e V such that X -|- = X for every X e V (existence of 

additive identity) ; 
(4) for every e V there exists -x e V such that x-I-(-x) (existence 

of additive inverses); 
(5) X -|- y = y -|- X for every x, y e V (commutativity); 
(6) i f d € I F " a n d x € V , t h e n a x € V ;  
(7) a(x -|- y) = dx + ay for every a e IF and every x, y e V; 
(8) (a + B)X = ax -|- Bx for every a, B e IF and every X e V ;  
(9) (aB)X = d(BX) for every a, B e IF and every X e V; and 

(10) 1 X = X for every X e V. 

0 

33 
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When IF = R we speak of V as a REAL VECTOR SPACE and when IF 
we call it a COMPLEX VECTOR SPACE. 

(I 

4.2 Exercises 

(1) Let V be the set of all real numbers. Define an operation of "addition" 
by 

My 

.CU EEI y = the maximum of Hz: and y 

for all y 6 V. Define an operation of "scalar multiplication" by 

a .CU Z ax 

f o r a 1 1 a € R a n d a : E V .  
oder the operations and the set is not a vector space. 

vector space axioms (see 4.1.1 (1)-(l0)) that fail to hold are 
, and . 7 

he 
7 

(2) Let V be the set of all real numbers 
operation of "addition" by 

33 ; U >  such that 0. Define an 

My 

l as EEI y = :cy -|- 

for all y 6 V. Define an operation of "scalar multiplication" by 

a as Z 02;c 

for all a € lR and a: E V. 
oder the operations and the set (is/is not) a 

vector space. If it is not, list all the vector space axioms (see 4.1.1 
(1)-(l0)) that fail to hold. Answer: The axioms that are not satisfied 
are 

(3) Let V be lli2.2, the set of all ordered pairs (33, y) of real numbers. Define 
an operation of "addition" by 

('u,,'u)EEI(a:,y) = (u+zl3+ ' u + y + l )  

for all (u, u) and (az, y) in V. Define an operation of "scalar multiplica- 
tion" by 

1, 

a (co, y) Z (acc, ay )  

for all a 6 R and (so, y) 6 V. 
oder the operations and the set is not a vector space. 

vector space axioms (see 4.1.1 (1)-(l0)) that fail to hold are 
and . 

he 
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(4) Let V be R2, the set of all ordered pairs (33, y) of real numbers. Define 
an operation of "addition" by 

EEI (u + 0) 

for all (u, u) and (az, y) in V. Define an operation of "scalar multiplica- 
tion" by 

Cu»vl Qr,y) ' v  

(co, y) Z (acc, ay )  a 

for all a 6 R and (so, y) 6 V. 
oder the operations and the set is not a vector space. 

vector space axioms (see 4.1.1 (1)-(l0)) that fail to hold are 
, and 

he 
7 

all n X (5) Let V be the set of n matrices of real numbers. Define an 
operation of "addition" by 

l A EEI B Z 

2 
for all A, B 6 V. Define an operation of "scalar multiplication" by 

a 

-lAB + BA)  

0 

for a11 a € R and A € V. 
oder the operations and the set is not a vector space. 

vector space axioms (see 4.1.1 (1)-(l0)) that fail to hold are 
, and . 

he 
7 

(6) Below are portions of proofs of four results about vector spaces which 
establish the fact that multiplying a vector Hz: by the scalar -l  produces 
-as, the additive inverse of az. Fill in the missing steps and the missing 
reasons. Choose reasons from the following list. 

H ( ) Hypothesis 

(l)-(10) Vector space axioms, see 4.1.1 
(PA) Proposition A 
(PB) Proposition B 
(PC) Proposition C 
(RN) Property of the Real Numbers 

Proposition 4.2.1 (A). A vector Hz: in a vector space V has at most one 
additive inverse. That is, if y and Z are vectors in V such that X -|- y = 
andx-I-z  = 0, t h e n y = z .  

0 



36 Eazercises and Problems in Linear Algebra 

Proof. 0 0. Suppose that X + y = and X + Then Z 

y 

II 

y + ( x + z l  

( x + y l +  Z 

N
 

(reason: 

(reason: 

(reason: (2)) 
(reason: 

(reason: ( II 
(reason: (5)) 
(reason: 

H 

) 
) 

. 

Proposition 4.2.2 (B). If 
then X = 0. 

X E V where V is a vector space and X -|- X = X7 

Proof. If X € V a n d x - | -  

: X - | -  X 0 

X x, then 

(x + x) + (-x) 

(reason: 
(reason: (4)) 
(reason: 
(reason: ( II 
(reason: 

H 
0 

Proposition 4.2.3 (C). 

l. 
If an is a vector in a vector space V, then Ox = 0. 

Proof. If X Q V ,  then 

Ox = (0 -|- 0) X (reason: 

(reason: (8)) 

0 Thus Ox = (reason: 

is -x, 
Proposition 4.2.4 (D). If at is a vector in a vector space V, then (-1)x 

the additive inverse of X. 

Proof. If X 6 V, then 

x +  (-1) 
- x  

(reason: (10)) 

) 
X 

0 

= ( l  -|- (- l))  (reason: 
= 0 • (reason: ) 

(reason: >. 
It then follows immediately from that (- l)  - x  X. 
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(7) In this exercise we prove that multiplying the zero vector by an arbi- 
trary scalar produces the zero vector. For each step of the proof give 
the appropriate reason. Choose reasons from the following list. 

(1)-(10) Vector space axioms 4.1.1. 
(PB) Proposition 4.2.2 
(RN) Property of the Real Numbers 

Proposition 4.2.5 (E). If 0 
- 0  Z 0. a scalar, then a 

is the zero vector in a vector space and a is 

Proof. Let 0 be the zero vector of some vector space. Then for every 
scalar a 

a a 0 0 0 
0 0 
( + )  

a -  -I-0~ 

(reason: 

(reason: 
) 
) 

It then follows immediately from that a 0 0. 

(8) In this exercise we prove that the product of a scalar and a vector is 
zero if and only if either the scalar or the vector is zero. After each 
step of the proof give the appropriate reason. Choose reasons from the 
following list. 

H ( ) Hypothesis. 
(l)-(10) Vector space axioms 4.1.1. 

(PC), (PE) Propositions 4.2.3 and 4.2.5, respectively. 
(RN) Property of the Real Numbers. 

Proposition 4.2.6. 
ax = 0 

X 

0. 
Suppose that is a vector and a is a scalar. Then 

if and only if a = 0  o r =  

and Proof. We have already shown in 
or X = 0, then ax = 0. 

To prove the converse we suppose that ax = and that or 96 0; and 
we prove that X = 0. This conclusion results from the following easy 

0 

that if 0 a 
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calculation: 

- x  (reason: 
\ 

x (reasons : and 

l 
(0~x) (reason: 

a 
l 

0 (reason: 
a 
0 (reason: . 

4.3 Problems 

(1) Prove that if V is a vector space, then its additive identity is unique. 
That is, show that if 0 0 = X for 
a11a :€Vandx- l -0=  

(2) Let V be the set of all real numbers 
operation of "addition" by 

33 

0 0. 
and 0 are vectors in V such that X -I- 

X for all J: 6 V, then 

such that > 0. Define an .CU 

My 

as y = ivy 

for all y 6 V. Define an operation of "scalar multiplication" by 
a a as 33 

f o r a 1 1 a € R a n d a : E V .  
Prove that under the operations and the set is a vector space. 

(3) With the usual operations of addition and scalar multiplication the set 
of all n X n matrices of real numbers is a vector space: in particular, 
all the vector space axioms (see 4.1.1 (1)-(l0)) are satisfied. Explain 
clearly why the set of all nonsingular n X n matrices of real numbers is 
not a vector space under these same operations. 

4.4 Answers to Odd-Numbered Exercises 

(1) 3, 4, 7, 8 

(3) 7, 8 

(5) 2, 4, 10 

(7) 3, 7, PB 



Chapter 5 

SUBSPACES 

5.1 Background 

Topics: subspaces of a vector space 

Definition 5.1.1. A nonempty subset of M of a vector space V is a 
SUBSPACE of V if it is closed under addition and scalar multiplication. 
(That is: if X and y belong to M, so does X + y; and if X belongs to M and 
a e R, then ax belongs to M . )  

Notation 5.1.2. We use the notation M 5 V to indicate that M is a 
subspace of a vector space V. 

Notation 5.1.3. Here are some frequently encountered families of 
functions : 

jE' = .7:[a, b] = {f : f is a real valued function on the interval [a, b]} 
(5.l.l) 

P 

7D4 

QUO 

C 

D 

IC 

77[a,b] = {p: P is 
7>4[a, be = 

Q4[CL, 6] = 

C[a,b] Z {f 

D[a, 6] Z {f 
lC[a,b] = { f Q F =  f is 

a polynomial function on [a, b] } 

{p 6 77: the degree of p is less than 4} 

{p e 77: the degree of p is equal to 4} 

e .F : f is continuous} 

e .F : f is differentiable} 

a constant function} 

(5.l.2) 

(51.3) 

(51.4) 

(51.5) 

(51.6) 

(5.l.7) 

39 
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B 6 

6 

B[a, 6] = {f F: f is bounded} 

.7 = 7[a,b] = {f I ;  f is integrable} 

(51.8) 

(51.9) 

f(a3) do exists.) 

(A function f 6 .F is BOUNDED if there exists a number M > 0 such that 
lf(a:)l g M for all as in [0, b]. It is (RIEMANN) INTEGRABLE if it is bounded 
and Tb 
Definition 5.1.4. If A and B are subsets of a vector space then the SUM 
of A and B, denoted by A + B, is defined by 

b : a  A-I-B::  {a+  A and B}. 6 b 6 

Definition 5.1.5. Let M and N be subspaces of a vector space V. If 
M VW N = {0} and M + N = V, then V is the (INTERNAL) DIRECT SUM of 
M and N. In this case we write 

V M N. ® 

In this case the subspaces M and N are COMPLEMENTARY and each is the 
COMPLEMENT of the other. 

Definition 5.1.6. Let V and W be vector spaces. If addition and scalar 
multiplication are defined on the Cartesian product V X W by 

(u/w) + (Hay) := (u + + y) a:,w 

and 

a('u,wl := ( l a w )  

for all u, x 6 V, all w, y 6 W, and all a 6 IE", then V X W becomes a 
vector space. (This is called the PRODUCT or (EXTERNAL) DIRECT SUM of 
V and W. It is frequently denoted by V ® W.) 

® 

Notice that the same notation is used for internal and external direct 
sums. Some authors make a notational distinction by using ®¢ and @€ (or 

and Egg to denote these two concepts. Others regard it as somewhat 
pedantic on the grounds that context should make it clear whether or not 
the summands are currently being regarded as subspaces of some larger 
vector space. The matter becomes even worse when, in inner product spaces, 
we encounter 'orthogonal direct sums' (see Definition 18.1.6 in Chapter 18). 
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Definition 5.1.7. Let M be a subspace of a vector space V. Define an 
equivalence relation on V by 

;Ur\J y if and only if y L U E M .  

For each x 6 V let [as] be the equivalence class containing x. Let V/M be 
the set of all equivalence classes of elements of V. For [as] and [y] in V/M 
define 

[13] + [y] :z [as + y] 

and for a 6 R and [as] 6 V/M define 

0[a:' := [0;c]. 

Under these operations V/M becomes a vector space. It is the QUOTIENT 
SPACE of V by M. The notation V/M is usually read "V mod M".  

Note that the preceding "definition" contains many statements of fact. 
These must be verified. (See Problem 6.) 

5.2 Exercises 

(1) One of the following is a subspace of R3. Which one? 

The set of points (az, y, z) in R3 such that 

(a) az - I -Zy-3z=4 .  
(be x 2 1  = y = 
(c) a z - I - y + z = 0  a n d : - y - I - z =  l .  
(dl a : = - z a n d a : = z .  
(e) 1:2 -|- y2 = z. 
(f) % Z y 5 3 .  

Answer: l ) is a subspace of R3 . 

(2) The smallest subspace of R3 containing the vectors (2, -3, -3) and 
(0, 3, 2) is the plane whose equation is aa3+by+6z = 0 where a = , 
and b = . 

Cl 

(3) The smallest subspace of R3 containing the vectors (0, -3,6) and 
(0, l ,  -2) is the line whose equations are an = a and by where 

, and b = . 
Z 
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(4) Let ROO denote the vector space of all sequences of real numbers. 
(Addition and scalar multiplication are defined coordinatewise.) In 
each of the following a subset of ROO is described. Write yes if the set 
is a subspace of ROO and no if it is not. 

(a) Sequences that have infinitely many zeros (for example, 
( l , l , 0 , l , l , 0 , l , l , 0 , . . . ) ) .  Answer: . 

(b) Sequences that are eventually zero. (A sequence (azk) is eventually 
zero if there is an index No such that be'fl = 0 whenever n > f ig.)  

Answer: . 

(c) Sequences that are absolutely summable. (A sequence (wk) is abso- 
lutely summable if Ek=1lmkl < oo.) Answer: . 

(d) Bounded sequences. (A sequence (act) is bounded if there is a pos- 
itive number M such that l5UI=cl < M for every Le.) Answer: . 

(e) Decreasing sequences. (A sequence (wk) is decreasing if a:ni+1 < In 

for each n.) Answer: . 
(f) Convergent sequences. Answer: . 
(g) Arithmetic progressions. (A sequence (act) is arithmetic if it is 

of the form (a,a + k , a  + 2k,a  + 3k, . . .) for some constant je.) 
Answer: . 

(h) Geometric progressions. (A sequence (ivkl is geometric if it is of 
the form (a, kg,  k2a, k3a, . . .l for some constant ac.) Answer: . 

(5) Let M and N be subspaces of a vector space V. Consider the following 
subsets of V. 

V 

V 

(a) M VW N. (A vector belongs to M O N if it belongs to both M 
and N.) 

(b) M U N. (A vector belongs to M U N if it belongs to either M 
or N.) 

(c) M -|- N. (A vector V belongs to M -|- N if there are vectors e M 
and n e N such that V = In -|- n.) 

(d) M - N. (A vector V belongs to M - N if there are vectors e M 
and n e N such that V = In - n.) 

m 

m 

Which of (a)-(d) are subspaces of V? 
Answer: 
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(6) For a fixed interval [a, b], which sets of functions in the list 5.1.3 are 
vector subspaces of which? 
Answer: 

YI 

YI 

YI 

YI 

YI 

YI 

YI 

0 

n 

(7) Let M be the plane ; z : + y + z  = 0 and N be the line x = y = z in 
R3. The purpose of this exercise is to confirm that R3 = M ® N. This 
requires establishing three things: (i) M and N are subspaces of R3 
(which is very easy and which we omit); (ii) R3 = M + N; and (iii) 
M a n = { }  
(a) To show that R3 = M + N  we need R3 Q M + N  and M + N  Q fig. 

Since M C $3 and N C R3, it is clear that M+N C R3. So all that 
is required is to show that R3 C M + N. That is, given a vector 
X = (a31,a32,;c3) in R3 we must find vectors = (m1,m2,m3) in 
M and = (n1,n2,n3) in N such that X = + Find two such 
vectors. 

Answer: ( 

3 ) 

l 

m 
m n. 

m 7 7 

l 
n and 3 ( 7 7 

X 

l. 
(b) The last thing to verify is that M O N = {0}; that is, that the 

only vector M and N have in common is the zero vector. Suppose 
that a vector = (;c1,;c2,a:3) belongs to both M and N. Since 

e M it must satisfy the equation 
X 

£61- l '£U2- l '£C3=0.  (l) 

3 3 6  Since N it must satisfy the equations 

1131 SEQ 

£182 S133- 

and (2) 

(3) 

Solve the system of equations (1)-(3). 

Answer: X = l , , ). 
(8) Let C = C[-l, l] be the vector space of all continuous real valued 

functions on the interval 1-1, l]. A function f in C is EVEN if f(-as) = 
f(a:) for all as e 1-1, l]; it is ODD if f (-zzz) = -f(a:) for all as e 1-1, l]. 
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Let CO = {f 6 C: f is odd} and Ce = {f C: f is even}. To show 
that C = CO ® Ce we need to show 3 things. 

(i) CO and Ce are subspaces of C. This is quite simple: let's do just one 
part of the proof. We will show that CO is closed under addition. 
After each step of the following proof indicate the justification 
for that step. Make your choices from the following list. 

6 

(Al 
(DA) 
(DE) 
(DO) 

( ) H 

Arithmetic of real numbers. 
Definition of addition of functions. 
Definition of "even function" . 
Definition of "odd function" . 
Hypothesis (that is, our assumptions or suppositions). 

Proof. Let f ,  g 6 Co. Then 

(f + go(-SUI Z f(-12) + g(-Lu) (reason: 
= - f (a:)  -|- (-g(a:)) (reason: 
= -(f(a:) -|- g(a:)) (reason: 

= - ( f  + g)(a:). (reason: 

l. Thus f + g 6 Co. (reason 

and 

0 0 (ii) CO FW Ce = { } (where is the constant function on [-l, l] whose 
value is zero). Again choose from the reasons listed in part (i) to 
justify the given proof. 

Proof. Suppose f 6 CO VW Ce. Then for each x e [-l, l] 

f(;c) = f(-as) (reason: ) 
= -f(a:). (reason: ) 

Thus f(a:) = 0 for every Hz: e [-1, l]; that is, f (reason: 
). 

0. 

(iii) C = CO -|- Ce- To verify this we must show that every continuous 
function f on [-1, l] can be written as the sum of an odd function 
j and an even function k. It turns out that the functions j and k 
can be written as linear combinations of the given function f and 
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the function g defined by g(a:) = f(-at) 
are the appropriate coefficients? 

for - l  < as < l .  What 

Answer: .7 
k 

g 
g. 

(9) Let M be the line = y = and N be the line y = 2 in .CU Z .CU R3 . 

(a) The line M is the set of all scalar multiples of the vector (l,  7 

. 
(b) The line N is the set of all scalar multiples of the vector 1, 7 

. 
(c) The set M + N is (geometrically speaking) a 

equation is as: -|- by -|- Z = 0 where a = and b 
in R3; its 

(10) Let M be the plane a s - y - I - z =  0 and N b e  the plane a i - I - Z y - z = 0  
in R3. State in one short sentence how you know that R3 is not the 
direct sum of M and N. 

Answer: 

( I I )  Let M be the plane Za: - 3y+4z-|- l = 0 and N be the line 
in R3. State in one short sentence how you know that R3 
direct sum of M and N .  

x Y Z 
4 - 2 - 3  
is not the 

Answer : 

(12) Let M be the plane a:+y+z = 0 and N be the line ac- l = y = z + 2  
in R3. State in one short sentence how you know that R3 is not the 
direct sum of M and N .  

Answer : 

x 
4 (13) Let M be the line as = y = Z and N be the line - 

State in one short sentence how you know that R3 
sum of M and N. 

Answer: 

= g = § in R3. 
is not the direct 

(14) Let M be the plane J: -|- y + Z = 0 and N be the line x = - y  = 32. 
The purpose of this exercise is to see (in two different ways) that R3 
is not the direct sum of M and N. 
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If 

(a) If R3 were equal to M ® N, then M O N would contain only the 
zero vector. Show that this is not the case by finding a nonzero 
vector X in R3 that belongs to M O N. 
Answer: X = l , , II. 

(b) R3 were equal to M ® N, then, in particular, we would have 
R3 = M -|- N. Since both M and N are subsets of R3, it is clear 
that M -|- N C R3. Show that the reverse inclusion R3 C M -|- N 
is not correct by finding a vector X e R3 that cannot be written 
in the form Ill -|- n where Ill e M and n e N. 
Answer: X = (-6, 8, a) is such a vector provided that a go . 

(c) We have seen in part (b) that M -l-N ye R3. Then what is M4-N? 
Answer: M -|- N = . 

5.3 Problems 

(1) Let M and N be subspaces of a vector space V. Consider the following 
subsets of V .  

V 

V 

(a) M VW N. (A vector belongs to M O N if it belongs to both M 
and n.) 

(b) M U N. (A vector belongs to M U N if it belongs to either M 
or N.l 

(c) M -|- N. (A vector V belongs to M + N if there are vectors e M 
and n e N such that V = In -|- n.) 

(d) M - N. (A vector V belongs to M - N if there are vectors e M 
and n e N such that V = in - n.) 

111 

111 

For each of the sets (a)-(d) above, either prove that it is a subspace 
of V or give a counterexample to show that it need not be a subspace 
of V .  

(2) Let C = C[0, l] be the family of continuous real valued functions on the 
interval [0, l]. Define 

f 1 ( t l = t  and f 2 ( i ) = t 4  
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for 0 < t < l .  Let M be the set of all functions of the form all -|- W2 
where a, B e R. And let N be the set of all functions g in C that satisfy 

0 

1 1 

0 tg(t) it = and t49(t) dt = 0. 
0 

Is C the direct sum of M and N? (Give a careful proof of your claim and 
illustrate it with an example. What does your result say, for instance, 
about the function h defined by h(t) = t2 for 0 < t < l.) 

(3) Let V be a vector space. 

(a) Let .M be a family of subspaces of V. Prove that the intersection 
H M of this family is itself a subspace of V. 

(b) Let A be a set of vectors in V. Explain carefully why it makes sense 
to say that the intersection of the family of all subspaces containing 
A is "the smallest subspace of V that contains A" . 

(c) Prove that, for A as in part (b), the set of all sums of scalar multiples 
of vectors in A is the smallest subspace of V that contains A. 

II 
up

-»
 

<2
 I (4) In R3 let M be the line as = y = z, N be the line an 

L = M -|- N. Give a careful proof that L = M N. 

(5) Let V be a vector space and suppose that V = M ® N. Show that 
for every V e V there exist unique vectors Ill e M and n e N such 
that V = Ill -|- n. Hint. It should be clear that the only thing you have 
to establish is the uniqueness of the vectors Ill and n. To this end, 
suppose that a vector v in V can be written as 1111 + 111 and it can also 
be written as 1112 -|- 112 where 1111, 1112 e M and no, 112 e N. Prove that 
1111 = 1112 and 111 = 112. 

(6) Verify the assertions made in definition 5.1.7. In particular, show that 
is an equivalence relation, that addition and scalar multiplication 

of the set of equivalence classes are well defined, and that under these 
operations V/M is a vector space. 

® 

1 A Z , & H d  

5.4 Answers to Odd-Numbered Exercises 

(l) (dl 
(3) 0, -2 
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(5) (al, IcI, and (d) 
iv) (3) 2581 - £62 - £1337 -£U1 -|- 21132 - $1337 -.CE1 - .SEQ -1- 251337 £131 -|- £62 -|- 3237 

331 +332 -l-$83, £61 +5132 +5$37 

(b) 0, 0, 0 
(9) (a) 1, l 

(b) 2, 3 
(c) plane, l ,  -2 

( I I )  M is not a subspace of R3 . 

(13) M -|- N is a plane, not all of R3. 



Chapter 6 

LINEAR INDEPENDENCE 

6.1 Background 

Remark 6.1.1. Some authors of linear algebra texts make it appear as 
if the terms linear dependence and linear independence, span, and basis 
pertain only to finite sets of vectors. This is extremely misleading. The 
expressions should make sense for arbitrary sets. In particular, do not be 
misled into believing that a basis for a vector space must be a finite set of 
vectors (or a sequence of vectors). While it is true that in most elementary 
linear algebra courses the emphasis is on the study of finite dimensional 
vector spaces, bases for vector spaces may be very large indeed. I recom- 
mend the following definitions. 

Topics: linear combinations, span, linear dependence and independence. 

Definition 6.1.2. Recall that a vector y is a LINEAR COMBINATION 
of distinct vectors X l ,  . . . 7 X'fl if there exist scalars a l ,  . . . ,an  such that 
y = E k z l  akxk .  Note: linear combinations are finite sums. The linear com- 
bination Ekz l  Ozkxk is TRIVIAL if all the coefficients a l ,  . . . , aTL are zero. If 
at least one as is different from zero, the linear combination is NONTRIVIAL. 

Example 6.1.3. In R2 the vector (8,2) is a linear combination of the 
vectors (l, l )  and ( l ,  -1) because (8,2) = 5(l, II -l- 3(l, -1). 

Example 6.1.4. In R3 the vector ( l ,  2, 3) is not a linear combination of 
the vectors ( l ,  l ,0)  and ( l ,  - l ,0).  

Definition 6.1.5. Suppose that A is a subset (finite or not) of a vector 
space V. The SPAN of A is the set of all linear combinations of elements of A. 

49 
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Another way of saying the same thing: the SPAN of A is the smallest sub- 
space of V which contains A. (That these characterizations are equivalent 
is not completely obvious. Proof is required. See Problem 3 in Chapter 5.) 
We denote the span of A by span A. If U = span A, we say that A SPANS U 
or that U is SPANNED BY A. 

Example 6.1.6. 
p in 

For each n = 0, 1,2, . . . define a function pn on R 
by ,,(a:) . Let 77 be the set of polynomial functions on R. It 
is a subspace of the vector space of continuous functions on R. Then 
7? = span{p0,p1,p2 . . .}. The exponential function exp, whose value at 
x is ex, is not in the span of the set { 2 . . .}. 07 17 p p p 

Definition 6.1.7. A subset A (finite or not) of a vector space is LINEARLY 
DEPENDENT if the zero vector 0 can be written as a nontrivial linear combi- 
nation of elements of A; that is, if there exist distinct vectors x l ,  . . . , xn e A 
and scalars d l ,  . . . , an, not all zero, such that Ekz l  akxk = 0. A subset 
of a vector space is LINEARLY INDEPENDENT if it is not linearly dependent. 

Technically, it is a set of vectors that is linearly dependent or indepen- 
dent. Nevertheless, these terms are frequently used as if they were properties 
of the vectors themselves. For instance, if S = {Xl 7 . . . ,x,,} is a finite set of 
vectors in a vector space, you may see the assertions "the set S is linearly 
independent" and "the vectors X l ,  . . . 7 X'fl are linearly independent" used 
interchangeably. 

Example 6.1.8. The (vectors going from the origin to) points on the unit 
circle in R2 are linearly dependent. Reason: If X = (1, 0), y = / 

5 7 7  , t h e n + y + ( - l ) z  = 

1 \ \ 
2 2 7 

and Z 0. 

7 

Example 6.1.9. For each n = 0, 1,2, . . . define a function pTL on R by 
p = x". Then the set {p0, pa, PA7 . . .} is a linearly independent subset 
of the vector space of continuous functions on R. 

6.2 Exercises 

Z 

0. 

( l )  Show that in the space R3 the vectors X = (1, l ,0),  y = (0, l ,  2), and 
= (3, l ,  -4) are linearly dependent by finding scalars a and B such 

that ax + By + z 
Answer: a Z 7 5 
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X i  1, y (2) Let ( l ,  ,0,0),  ( 0,1,0), (0 ,0 , l , l ) ,and (0,1,0,1). Z 

X 

u u 
u 

X 7 Y 7  

Ag 'Y 7 

,/"y 

(a) We can show that {w, x,y,z} is not a spanning set for R4 by 
finding a vector in R4 such that ¢ span{w, x, y, z}. One such 
vector is = ( l ,  2, 3, a) where a is any number except . 

(b) Show that {w, 
finding scalars 
Answer: a Z 

(c) 

-|- y. 

z} is a linearly dependent set of vectors by 
and 6 such that aw -|- X -|- 'by -|- dz = 0. 

, 5 = . 
Show that {w, x, y, z} is a linearly dependent set by writing Z as 
a linear combination of w, x, and y. Answer: Z = w -|- 

kg) Let p(a:) = 1:2 -|- 256 - 3, q(;v) = 21:2 - 3:13 + 4,  and T°(x) 
set {p, q, r} is linearly dependent if a = . 

aa:2 l .  The 

Z 

(4) Show that in the vector space R3 the vectors X = (l ,2 ,  -l),  y = 
(3, l ,  1), and z = (5, -5, 7) are linearly dependent by finding scalars a 
and B such that ax -|- By + 0. 

Answer: a 7 5 

(5) Let f1(a3) = s i n ,  f2(a:) = cos(a: -|- 7rr/6), and f3(;z:) = sin(a: - 7r/4) for 
0 < as < 2'rr. Show that {f1, f2, f3} is linearly dependent by finding 
constants a and B such that all - 2f2 - Bf3 = 0. 

Answer: a and 5 

In (6) the space C[0,tr] let f ,  g, h, and j be the vectors defined by 

f(=vl 

900) 
Mac) 

CoCcI 

l 

.CU 

COS 33 

2 Hz: 
COS 

2 

for 0 < x < 7T. Show that f ,  g, h, and j are linearly dependent by 
writing j as a linear combination of f ,  g, and h. 

Answer: j = f -|- g -|- h. 
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u (7) Let = (A,l,0), 
A which make {u, 

V ( A , ) ,  l ,  l and w = (0, l ,A).  Find all values of 
w} a linearly dependent subset of R3. Answer: V7 

u V w (8) Let = ( l ,0,-2) ,  : (l,2,A), and = (2 , l , - l ) .  Find values 
of A which make {u, v, w} a linearly dependent subset of R3. Answer: 

all 

(9) Let p(a:) = 333-a22+2a:+3, q(;c) = 3x34-51:2 -Hz:-l, My) = x3+2x+2,  
and s(a3) = 7333 + 0a:2 -1- 5. The set {p, q, r, s} is linearly dependent if 
Cl 

In (10) the space C[0, or] define the vectors f ,  g,  and h by 

33 f(=v) 

9(12l 

Mac) 

for 0 < x < 7T. We show that f ,  g, and h are linearly independent. 
This is accomplished by showing that if of + Hg + 'oh = 0, then 
a = B = by = 0. So we start by supposing that if -|- B9 -|- 'yh = 
that is, 

sin x 

COS .CU 

0. 
7 

as:+Bsina:JI-tycosa: 0 (l) 

3 3 6  

see by 

for all [0, or] . 
(a) We that must be zero by setting 

Now differentiate (1) to obtain 

33 in equation (1). 

a+Bc:osx 0 (2) 

for all as 6 [0, 'ii]. 

(b) We see that a must be zero by setting 

Differentiate (2) to obtain 

33 in equation (2). 

-Bsinas 0 (3) 

for all as 6 [0, 'rr1. 

(c) We conclude that = 0 by setting 5 .CU in (3)~ 
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6.3 Problems 

In (1) the space C[0, l] define the vectors f ,  g, and h by 

f(=vl Z .CU 

900) = 6" 

Mac) = 6-x 

for 0 < as < l .  Use the definition of linear independence to show that 
the functions f ,  g, and h are linearly independent. 

(2) Let a, b, and e be distinct real numbers. Use the definition of linear 
independence to give a careful proof that the vectors (l ,  l ,  l),  (a, b, c), 
and (a2, 62, c2) form a linearly independent subset of R3 . 

(3) Let {u, v, w} be a linearly independent set in a vector space V. Use 
the definition of linear independence to give a careful proof that the 
set {u -|- v, u -|- w, V + w} is linearly independent in V. 

(4) You are the leader of an engineering group in the company you work 
for and have a routine computation that has to be done repeatedly. At 
your disposal is an intern, Kim, a beginning high school student, who is 
bright but has had no advanced mathematics. In particular, Kim knows 
nothing about vectors or matrices. 

Here is the computation that is needed. Three vectors, a, b, and C are 
specified in R5. (Denote their span by M.) Also specified is a (sometimes 
long) list of other vectors S = { V I 7  V27 . . . ,v,,} in R5. The problem is 
to 

( l )  determine which of the vectors in S belong to M, and 
(2) for each vector Vi e S which does belong to M 

find constants and such that Vi = as b C. 

Kim has access to Computer Algebra System (Maple, or a similar pro- 
gram) with a Linear Algebra package. Write a simple and efficient algo- 
rithm (that is, a set of instructions) which will allow Kim to carry out 
the desired computation repeatedly. The algorithm should be simple in 
the sense that it uses only the most basic linear algebra commands (for 
example, Matrix, Vector, Transpose, RowRedacedEchelonForm, etc. in 
Maple). Remember, you must tell Kim everything: how to set up the 
appropriate matrices, what operations to perform on them, and how to 
interpret the results. The algorithm should be as efficient as you can 

QUO 5, 'Y + 5  + 7  
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make it. For example, it would certainly not be efficient for Kim to 
retype the coordinates of a, b, and C for each new Vi . 

Include in your write-up an actual printout showing how your algo- 
rithm works in some special case of your own invention. (For this exam- 
ple, the set S need contain only 5 or 6 vectors, some in U, some not.) 

(5) The point of this problem is not just to get a correct answer to (a)-(c) 
below using tools you may have learned elsewhere, but to give a care- 
ful explanation of how to apply the linear algebra techniques you have 
already encountered to solve this problem in a systematic fashion. For 
background you may wish to read a bit about networks and Kirchho# 's 
laws (see, for example, [5] Topic: Analyzing Networks, pages 72-77 or 
111 Electrical Networks, pages 538-542). 

Consider an electrical network having four nodes A, B, C, and 
D connected by six branches 1, . . . ,6. Branch 1 connects A and B, 
branch 2 connects B and D; branch 3 connects C and B; branch 4 
connects C and D; branch 5 connects A and C, and branch 6 connects 
A and D. 

The current in branch k is In, where k = 1, . . . , 6. There is a 17 volt 
battery in branch 1 producing the current 11 that flows from A to B. 
In branches 2, 4, and 5 there are 0.5 ohm resistors, and in branches 1, 
3, and 6 there are 1 ohm resistors. 

D 

(a) Find the current in each branch. (Explain any minus signs that 
occur in your answer.) 

(b) Find the voltage drop across each branch. 

(c) Let pn be the potential at node n = A, B, C, D. The voltage drop 
across the branch connecting node j to node k is the difference in 
the potentials at nodes j and k. Suppose the network is grounded 
at (so that PD = 0). Find the potential at the other nodes. 

6.4 Answers to Odd-Numbered Exercises 

(1) -3, 2 

(3) 7 

(5) W-1, W 
iv) -/5, 0, \/5 
(9) -3 



Chapter 7 

BASIS FOR A VECTOR SPACE 

7.1 Background 

Topics: basis, dimension. 

Definition 7.1.1. A set B (finite or not) of vectors in a vector space V 
is a BASIS for V if it is linearly independent and spans V. 

Example 7.1.2. The vectors e1 = (l ,0,0),  e2 = (0, l ,0),  and e3 = (0,0, l )  
constitute a basis for the vector space R3 . 

Example 7.1.3. More generally, consider the vector space R" of all 
n-tuples of real numbers. For each natural number k between l and n 
let ek be the vector that is l in the nth-coordinate and 0 in all the others. 
Then the set {e1,e2, . . . ,e"} is a basis for R". It is called the STANDARD 
BAsis for R" . 
Example 7.1.4. For each n 
p = as". Then the set {p0, 
of polynomial functions on R. 

0, 1,2, . . . define a function pTL on R by 
1,  27 . . .} is a basis for the vector space 7? p p 

Two important facts of linear algebra are that regardless of the size of 
the space every vector space has a basis and that every subspace has a 
complement. 

Theorem 7.1.5. Let B be a linearly independent set of vectors in a vector 
space V .  Then there exists a set C of vectors in V such that B UC is a basis 
for V .  

Corollary 7.1.6. Every vector space has a basis. 

55 
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Corollary 7.1.7. Let V be a vector space. If M -< V ,  then there exists 
N -< V such that M = V .  ® N 

The next theorem says that any two bases for a vector space are the 
same size. 

Theorem 7.1.8. If B and C are bases for the same vector space, then 
there is a one-to-one correspondence from B onto C. 

Definition 7.1.9. A vector space V is FINITE DIMENSIONAL if it has a 
finite basis. Its DIMENSION (denoted by dim V) is the number of elements 
in the basis. If V does not have a finite basis it is INFINITE DIMENSIONAL. 

Remark 7.1.10. Although most elementary texts contain proofs of Theo- 
rem 7.1.5 (or its corollaries) and Theorem 7.1.8 for finite dimensional spaces, 
it is difficult to find in them proofs that hold for infinite dimensional spaces. 
The reason for this is that such proofs require a set theoretic axiom called 
Zo1°n's Lemma, which many instructors feel is a topic not appropriate for 
beginning courses. (See the discussion in 171, p. 238, ,gal 

Theorem 7.1.11. If M and N are #nite dimensional subspaces of a vector 
space, then M -|- N is #nite dimensional and 

dim(]M -I-N) = d i M + d i m N - d i m ( M V W N l .  

7.2 Exercises 

u 
u 

= (2,0,-1), V = (3,1,0), and w = ( l , - l , c )  where C 6 R. The 
, v ,  w} is a basis for R3 provided that c is not equal to . 

u 
u (1, 2, c) where C E R. The set 

c is not equal to . 7 V )  

( l )  Let 
set 

(2) Let = (1, -l ,3),  V = (l,0, l ) ,  and w = 
w} is a basis for R3 provided that 

(3) The dimension of 9)"l2 X 2 ,  the vector space of all 2 2 matrices of real 
numbers is . 

(4) The dimension of 32, the vector space of all 2 2 matrices of real 
numbers with zero trace is . 

(5) The dimension of the vector space of all real valued polynomial func- 
tions on R of degree 4 or less is . 

(6) In R4 let M be the subspace spanned by the vectors ( l ,  l ,  l ,0)  and 
(0, -4, l ,5)  and let N be the subspace spanned by (0, -2, l , 2 )  and 

X 

X 
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7 

(l,  -l ,  l,3). One vector that belongs to both M and N is ( l ,  , 
). The dimension of M O N is and the dimension of 

M + N i s  

7.3 Problems 

X ( l )  Exhibit a basis for SJT2 $ 2 ,  the vector space of all 2 
numbers. 

(2) Exhibit a basis for 32, the vector space of all 2 2 matrices of real 
numbers with zero trace. 

(3) Exhibit a basis for 63, the vector space of all symmetric 3 
of real numbers. 

X 

2 matrices of real 

X 3 matrices 

(4) Let II be the set of all matrices of real numbers of the form 

and QI be the set of all real matrices of the form 

basis for II, for 'IL for II -|- 'IL and for II VW 'II 

(5) Prove that the vectors ( l , l ,0 ) ,  (l ,2,3),  and (2 , - l ,5)  form a basis 
for R3 . 

Exhibit a 

(6) Let V be a vector space and A be a linearly independent subset of V. 
Prove that A is a basis for V if and only if it is a maximal linearly 
independent subset of V. (If A is a linearly independent subset of V we 
say that it is a MAXIMAL linearly independent set if the addition of any 
vector at all to A will result in a set that is not linearly independent.) 

(7) Let V be a vector space and A a subset of V that spans V. Prove that 
A is a basis for V if and only if it is a minimal spanning set. (If A is 
a set which spans V we say that it is a MINIMAL spanning set if the 
removal of any vector at all from A will result in a set which does not 
span V.) 

7.4 Answers to Odd-Numbered Exercises 

(1) -2 

(3) 4 

(5) 5 



This page intentionally left blank 



Part 3 

LINEAR MAPS BETWEEN 
VECTOR SPACES 



This page intentionally left blank 



Chapter 8 

LINEARITY 

8.1 Background 

Topics: linear maps between vector spaces, kernel, nullspace, nullity, range, 
rank, isomorphism. 

Definition 8.1.1. A function f : A -> B is ONE-TO-ONE (or INJECTIVE) 
if 'LL = 'U in A whenever f ('u,l = f(ul in B. 

Definition 8.1.2. A function f : A -> B is ONTO (or SURJECTIVE) if for 
every b E B there exists a e A such that b = f(a). 

Definition 8.1.3. A function f :  A -> B is a ONE-T0-ONE CORRESPON- 
DENCE (or BIJECTIVE) if it is both injective and surjective (one-to-one and 
onto). 

Definition 8.1.4. A map T : V -> W between vector spaces is LINEAR if 

T ( x + y )  = T x + T y  for Allx, y e V (8.l.l) 

and 

T ( a x )  = aT for all X 6 V and a 6 IF. (8.l.2) 

Here IF = R if V and W are real vector spaces and IF = (C if they are 
complex vector spaces. 

A scalar valued linear map on a vector space V is a LINEAR FUNCTIONAL. 

61 



62 Eazercises and Problems in Linear Algebra 

A linear map is frequently called a LINEAR TRANSFORMATION, and, in 
case the domain and codomain are the same, it is often called a (LINEAR) 
OPERATOR. The family of all linear transformations from V into W is 
denoted by £(V, W). We shorten £(V, V) to £(V). 

Two oddities of notation concerning linear transformations deserve com- 
ment. First, the value of T at X is usually written Tx rather than T ( x )  . 
Naturally the parentheses are used whenever their omission would create 
ambiguity. For example, in (8.l.l) above Tx -l- y is not an acceptable sub- 
stitute for T(X + y). Second, the symbol for composition of two linear 
transformations is ordinarily omitted. If S e £(U, V) and T e £(V, W), 
then the composite of T and S is denoted by TS (rather than by T o S). As 
a consequence of this convention when T e £(V) the linear operator T o T 
is written as T2, T o T o T as T3, and so on. 

For future reference here are two obvious properties of a linear map. 

0 0. 
Proposition 8.1.5. If T : V -> W is a linear map between vector spaces, 
then T (  ) = 

Proposition 8.1.6. If T : V -> W is a linear map between vector spaces, 
then T ( - X l  = -TX for every X 6 V .  

You should prove these propositions if (and only if) it is not immediately 
obvious to you how to do so. 

Definition 8.1.7. Let T: V -> W be a linear transformation between 
vector spaces. Then her T, the KERNEL of T, is defined to be the set of all 
X in V such that Tx = 0. The kernel of T is also called the nullspace of T. 
If V is finite dimensional, the dimension of the kernel of T is the NULLITY 
of T. 

Also, ran T, the RANGE of T, is the set of all y in W such that y = Tx 
for some X in V. If the range of T is finite dimensional, its dimension is the 
RANK of T .  

Notation 8.1.8. Let V be a vector space. We denote the IDENTITY MAP 
on V (that is, the map X +-> X from V into itself) by Iv, or just I. 

Theorem 8.1.9. 

The following fundamental result is proved in most linear algebra texts. 

If T : V -> W is a linear map between finite dimensional 
vector spaces, then 

rank(T) + nullity(T) = dim V. 
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(For an example of a proof, see [4], p. 90.) 

Definition 8.1.10. Let T:  V -> W and S: W -> V be linear maps. If 
ST = Iv, then T is a RIGHT INVERSE for S and S is a LEFT INVERSE for T. 
The mapping T is INVERTIBLE (or is an ISOMORPHISM) if there exists a 
linear transformation, which we denote by T-1 mapping W into V, such 
that 

TT-1 = IW and T-1T = Iv. 

The vector spaces V and W are ISOMORPHIC if there exists an isomorphism 
T from V to W. We write V 2 W to indicate that V and W are isomorphic. 

8.2 Exercises 

T x  a;'37 XI SU2)l"3-$2,931 

(1) Define T: R3 -> R4 by 

(121 + 

for all X = (a:1,a:2,;c3) in R3. 
(a) Then T(1, -2,3) 
(b) Find a vector X 

Answer: X = l 
(2) Define T: R4 -> R3 by 

Z ( 7 7 7 l. 
E R3 such that Tx = (8, 9, -5, 0). 

). 

2582 

7 7 

T x  

for all X 

(a) Then T ( 2 ,  l ,  
(b) Find a vector X 

Answer: X = l 

in 

(2131 + 1:3 + 134,131 - 2582 - 5123 -|- 334) 

(~U17~U27a;.37a;.4l R4_ 

- l ,3)  = (  7 7 l. 
E R4 such that Tx = (3, -1, -3). 

l. 

$37562 

7 7 7 

T(:c, y ,  2> 
(3) Let T be the linear map from R3 to R3 defined by 

(a :+2y-  2 x + 3 y +  4a2+7y-  

The kernel of T is (geometrically) a whose equation(s) is(are) 

27 27 Z • 

7 

and the range of T is geometrically a 
is(are) . 

whose equation(s) 
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(4) Let T:  R3 -> R3 be the linear transformation whose action on the 
standard basis vectors of R3 is 

T(1,0, 0) 

T(0,  1, 0) 

T(0,0, 1) = (2, -3,4). 

as 

Then T(5 ,  l ,  - l )  = ( , , l. The kernel of T is the 
whose equation is at + ay -|- bz = 0 where a = and 

b . The range of T is the whose equations are 
Z - = - = - w h e r e =  and wafered= . 

2 C d 
y 

(5) Let 77 be the vector space of all polynomial functions on 12. with real 
coefficients. Define linear transformations T, D:  77 -> 77 by 

(DpW) Z p'(:cl 

and 

(TPXH2) = 32p(;6) 

for all 33 6 IR. 

(a) Let p(x) = 1:3 -7zu2+5a:+6 for all x E R. Then ((D-l-T)(p))(a3) = 
$4-aa:3-I-ba:2-ba:-I-cwherea= , b =  , a n d =  . 

(b) Let p be as in (a). Then (DTp)(a3) = a;u3 - 6562 + ex -|- 6 where 
a = , b = , and C = . 

(c) Let p be as in (a). Then (TDp)(a3) = a333 - 6332 -|- ca: where a = 
, b = , and C = . 

(d) Evaluate (and simplify) the commutator [D, T] :: DT - TD. 
Answer: 1D,T1 = . 

(e) Find a number p such that lTD)P = TPDP -|- TD. Answer: p = 

(6) Let C = C[a, b] be the vector space of all continuous real valued func:- 
tions on the interval 1a, b] and C1 = C11a, b] be the vector space of all 
continuously differentiable real valued functions on 1a, bl. (Recall that 
a function is CONTINUOUSLY DIFFERENTIABLE if it has a derivative 
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and the derivative is continuous.) Let D:  C1 -> C be the linear trans- 
formation defined by 

Df f' 

and let T : C -> C1 be the linear transformation defined by 

(To)(a:) f( t)  dt 
x 

for all f 6 C and as 6 [a,b]. 

(a) Compute (and simplify) (DTf)(a3). Answer: 
(be Compute (and simplify) (TDf)(a3). Answer: 
(c) The kernel of T is . 
(d) The range of T is {g e C1 : }. 

(7) In this exercise we prove that a linear transformation T: V -> W 
between two vector spaces is one-to-one if and only if its kernel con- 
tains only the zero vector. After each step of the proof give the appro- 
priate reason. Choose reasons from the following list. 

(DKI Definition of "kernel" . 
(DL) Definition of "linear" . 
(DO) Definition of "one-to-one" . 

(H) Hypothesis. 
(Pa) Proposition 8.1.5. 
(Pb) Proposition 8.1.6. 
(VA) Vector space arithmetic (consequences of vector space axioms, 

definition of subtraction of vectors, etc.) 

7 

Proof. Suppose that T is one-to-one. We show that kerT = { al. 
Since Ov e kerT (reason: and we need only show that 
kerT C {0v}5 that is, we show that if X e kerT, then X = V -  So let 
X e kerT. Then Tx = 0w (reason: and ) and T V = W 

(reason: l. From this we conclude that X = V (reason: 
and 

Now we prove the converse. Suppose that her T = 
show that T is one-to-one. Let x, y 

0 

{0v}. We wish to 
6 V and suppose that Tx = T y .  

0 
0 0 

0 
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Then 

T(X - y) = T(X + (-y)) (reason: 

= T x  + T ( - y )  (reason: 

= T x  + ( - T y )  (reason: 

= Tx - Ty (reason: 

W (reason: 0 and 

) 

) 

0 Then X - y 6 kerT (reason: l. So X - y = V (reason: 
that is, X = y (reason: l. Thus T is one-to-one (reason: 
and 

7 

(8) Let C1(]R) be the vector space of all functions defined on the real line 
R that have continuous derivatives at each point of R and C (R) be 
the vector space of continuous functions on R. Define the function 
T: C1(Rl -> COR) by 

(To)(tl Z f '(t) + 3f(t) 

for every t 6 R. (Notice that T is a linear map.) The kernel of T is 
the set of all scalar multiples of the function g where g(t) = 
for each t. Thus the kernel of the linear map T is the solution space 
of the differential equation . 

(9) Let C2(lR) be the vector space of all functions defined on the real line 
R that have continuous second derivatives at each point of l 2. and C(R) 
be the vector space of continuous functions on R. Define the function 
T: C2(R) -> COR) by 

lTd)(tl Z f " ( t )  + f( t )  

for every t 6 IR. (Notice that T is a linear map.) Assume that 
the kernel of T is two dimensional. Then kerT = span{g, h} where 
g(t) = and h(t) = for all t. Thus the ker- 
nel of the linear map T is the solution space of the differential 
equation . 
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(10) Deine a function k on the unit square [0, l] [0, l] by X 

k(a:, y) 
Xv 

y, 

< 5 6  < for 0 y 

for 0 y < <;z:< 

< l 
l 

Deine an integral operator K on the vector space C [0, l] of continuous 
real valued functions on [0, l] by 

1 

(Kf)(;v) I<(;v»ylf(yl do 
0 

for 0 < x g l .  Find the function Kf when f is the function defined 
by f (a : )=a:2  f o r 0 § a : § l .  

Answer: (Kfl(a:) = . 

( I I )  Let T:  R3 -> R3: X +-> (131 -|- 3562 - 2£c3,£31 - 4:c3,a:1 + 6132). 

(a) The kernel of T is a 
equation(s) 

(b) The range of T is a 
equation(s) 

in R3 given by the 

R3 in given by the 

(12) Let T:  R2 -> R3: ( a y )  +-> (Za: - 3y,;c + Zy + l ,  5:13 - Zy). State in one 
short sentence how you know that T is not a linear transformation. 
Answer: 

(13) Let a = ( l ,0 ,0 ,0l ,  b : l ,  l ,0 ,0) ,  c : l ,  l ,  l ,0) ,  and d = ( l ,  l ,  l ,  l). 
Suppose that T:  R4 -> R7 is a mapping such that T ( a )  = T ( b )  = 
T (c )  = T ( d )  = 0 and that T(3,-l9,7,-8) = l , l , l , -3 ,6 ,2 ,5) .  
State in a short sentence or two how you know that T is not a linear 
transformation. 
Answer: • 

(14) Suppose that T : R3 -> R3 is a mapping (not identically zero) whose 
range is contained in the paraboloid Z = 5132 -|- y2. State in a short 
sentence or two how you know that T is not a linear transformation. 
Answer: 
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(15) Let T:  R2 -> R4: (az, y) +-> (Za:-3y, zz:-7y, :c-l-Zy-I-l, 533-Zy). State in 
one short sentence how you know that T is not a linear transformation. 
Answer: 

(16) Let a = ( l , l , 0 )  and b = (0 , l , l ) ,  and c = 
T: R3 -> R5 is a mapping such that T(a)  
T ( c )  = ( l ,  -3,6,2,5). State in 
that T is not a linear transformation. 

( l , 2 , l ) .  Suppose that 
= T ( b )  = 0 and that 

a short sentence or two how you know 

Answer : 

(17) Suppose that T:  R2 -> R2 is a mapping (not identically zero) such that 
T(l, l )  = (3, - 6 )  and T ( - 2 ,  -2) = (-6,3). State in a short sentence 
or two how you know that T is not a linear transformation. 
Answer: 

8.3 Problems 

(1) Let T : V -> W be a linear transformation between vector spaces and 
let N be a subspace of W. Define T - ( N )  := {v e V :  Tv e N}. Prove 
that T - ( N )  is a subspace of V. 

(2) Prove that a linear transformation T : R3 -> R2 cannot be one-to-one 
and that a linear transformation S : R2 -> R3 cannot be onto. Gener- 
alize these assertions. 

0 

(3) Prove that one-to-one linear transformations preserve linear indepen- 
dence. That is: Let T:  V -> W be a one-to-one linear transformation 
between vector spaces and {XI7 XI7 . . . ,xn} be a linearly independent 
subset of V. Prove that {TX1, TX27 . . . ,Txt,} is a linearly independent 
subset of W .  Hint. To prove that the vectors Txt, T X 2 7  . . . ,Txn are lin- 
early independent, it must be shown that the only linear combination 
of these vectors which equals zero is the trivial linear combination. So 
suppose that Ekzl  as,Txk, = and prove that every do must be zero. 
Use the result proved in exercise 7. 

(4) The goal of this problem is to understand and write up an introduction 
to invertible linear transformations. Your write-up should explain with 
spectacular clarity the basic facts about invertible linear transforma- 
tions. Include answers to the following questions giving complete 
proofs or counterexamples as required. (But don't number things in 
your report to correspond with the items that follow.) 
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(a) If a linear transformation has a right inverse must it have a left 
inverse? 

(b) If a linear transformation has a left inverse must it have a right 
inverse? 

(c) If a linear transformation has both a left and a right inverse, must 
it be invertible? (That is, must the left and right inverse be the 
same?) 

(d) If a linear transformation T has a unique right inverse is T neces- 
sarily invertible? Hint. Consider ST + S - I, where S is a unique 
right inverse for T. 

(e) What is the relationship between a linear transformation being one- 
to-one and onto and being invertible? 

(f) Let {vi, . . . ,v,,} be a linearly independent set of vectors in V. What 
condition should a linear transformation T : V -> W satisfy so that 
{TV1, . . . ,Tv.,,} is a linearly independent subset of W? 

(g) Let {u1, . . . ,u,,} be a basis for a subspace U of V. What condi- 
tions should a linear transformation T :  V -> W satisfy so that 
{Tu1, . . . , Tu.,,} is a basis for the subspace T(U)? 

(h) Suppose the vectors V I 7  . . . , v'fl span the vector space V and 
T: V -> W is a linear transformation. If {Tv1,  . . . ,TvV,} is a basis 
for W what can you conclude about the vectors V I ,  . . . ,v,,? What 
can you conclude about the linear transformation T? 

(i) Is it true that two finite dimensional vector spaces are isomorphic 
if and only if they have the same dimension? 

(5) A sequence of vector spaces and linear maps 

> Vn 1 
Jn _ > V" jn+1 

- ' > V n , - l - 1  > 

is said to be EXACT AT Vn if ran j'fl = kerjn+1° A sequence is EXACT if 
it is exact at each of its constituent vector spaces. A sequence of vector 
spaces and linear maps of the form 

0 > U V k - > W > 0 (l) 

is a SHORT EXACT SEQUENCE. (Here denotes the trivial 0-dimensional 
vector space, and the unlabeled arrows are the obvious linear maps.) 

0 

(a) The sequence (1) is exact at U if and only if j is injective. 
(b) The sequence (1) is exact at W if and only if k is surjective. 
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(c) Let U and V be vector spaces. Then the following sequence is short 
exact : 

0 > U L1  _ > ® U V '/T2 _ > V > 0. 

The indicated linear maps are defined by 

$1 : U - > U  V : a + - > ( a , 0 )  ® 

and 

W2 : U  V->V:(a ,b)+->b.  ® 

(d) Suppose a < b. Let /C be the family of constant functions on the 
interval 1a, b1, C1 be the family of all continuously differentiable 
functions on 1a, bl, and C be the family of all continuous functions 
on 1a, b]. Specify linear maps j and k so that the following sequence 
is short exact: 

0 > /C C1 k - > C > 0. 

(e) Let C be the family of all continuous functions on the interval [0, 2] . 
Let E1 be the mapping from C into l 2. defined by E1(f) = f ( l ) .  
(The functional E1 is called "evaluation at l".) 

Find a subspace .F of C such that the following sequence is short 
exact. 

0 > L _ > - E1 
jE' C > ] R  > 0. 

(f) Suppose that the following sequence of finite dimensional vector 
spaces and linear maps is exact. 

0 >V, . f n  fn > Vn 1 ' 1 > f2 -> VI -f1-> Vo > 0 

Show that 
'al 

(-1)"'d1m(vk) = 0. 
k=0 



Linearity 71 

Definition 8.3.1. It is frequently useful to think of functions as 
arrows in diagrams. For example, the situation f : U -> X, g :  X -> V, 
h :  U -> W, j :  W -> V may be represented by the following diagram. 

U f X 

h g 

w V 
j 

The diagram is said to COMMUTE (or to be a COMMUTATIVE DIAGRAM) 
if j o h = g o f .  
(g) Suppose that in the following diagram of vector spaces and linear 

maps 

0 

0 

U 

U/ 
f 

> 
- I  

.7 

V 

g 

V/ 

k 
> W 

I 
l h  
v 

> w' Ki 

0 

0 

In 

the rows are exact and the left square commutes. Then there exists 
a unique linear map h :  W -> W' that makes the right square 
commute. 

parts (h)-(k) consider the diagram 

0 

0 

> 

> 

U 

f 

U/ 

j > V 

g 

> V '  

k > W  

h 

I > W 

> 

> 

0 

0 
- I  

.7 
k/ 

operations of addition 
space. 

where the TOWS are exact and the squares commute. 
(h) If g is surjective, so is h. 
(i) If f is surjective and g is injective, then h is injective. 
(j) If f and h are surjective, so is g. 
(k) If f and h are injective, so is g. 

(6) Let V and W be vector spaces. Prove that (under the usual pointwise 
and scalar multiplication) £(V, W) is a vector 
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(7) Let M be a subspace of a vector space V and V/M be the quotient 
space defined in Definition 5.1.7 in Chapter 5. Then the map 

7r:V->V/M:;c»->[cc] 

is linear and is called the QUOTIENT MAP. 

Remark 8.3.2. Imagine a vector space V of large dimension to which 
no coordinates have been assigned. Let M be an arbitrary subspace of V. 
Does M have a complementary subspace? Well, yes, in general, many of 
them. But how would we go about choosing one? Of course we could start 
by working with bases, and putting in coordinates, and writing equations, 
and making some arbitrary choices to specify some complementary space. 
But all that seems rather unnatural involving a lot of wasted energy. A bet- 
ter solution is to relax the demand that the "complement" be literally a 
subspace of V, and replace it with something very simple that for most pur- 
poses works just as well. That object is the quotient space V / M .  No fuss, 
no muss, no bother. That is the point of the next problem. 

(8) If M and N are complementary subspaces of a vector space V, then 
N 

~ = V / M .  (So V 
~ = M ® VlM. )  Hint. Consider the map n -> [n] for 

every n e N. 

The following result is called the fundamental quotient theorem, or 
the first 'isomorphism theorem, for vector spaces. 

(9) Prove the following theorem and its corollary. 

Theorem 8.3.3. Let V and W be vector spaces and M -< V .  If T 6 
£(V, W )  and kerT D M, then there exists a unique T 6 £(V/M, W )  that 
makes the following diagram commute. 

V 

'ii 

\ 

V / M  W 
T 

Furthermore, if is injective if and only if her T 
and only if T i s .  

M ; and if is subjective if 
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Corollary 8.3.4. If T :  V -> W is a linear map between vector spaces, 
then 

ranT%V/kerT .  

8.4 Answers to Odd-Numbered Exercises 

(1) (a) -2, -l, 5, 5 
(b) 6, 3, -2 

(3) line, y 
3 

"5 _ 

(5) (21) 7, 8, 5 
(b) 4, 21, 10 
(c) 3, 14, 5 
(d) 
(Q) 2 

I 

Za plane, 251: -|- y Z 0 

(7) Pa, DK, H, DK, Pa, H, DO, VA, DL, Pb, VA, H, VA, DK, H, VA, 
Do, H 

( I I )  (21) _ 

2 
Z 

(9) sint, cost, y" -|- y = 0 

line, Z I 

(be plane, 2:13 - y - z = 0 

(13) R4 is the span of a, b, e, and d, all of which T takes to so were T 
linear, its range would contain only 0. 

(15) T does not map 0 to 0. 

(17) If T were linear, then T ( - 2 ,  -2) would be -2T(l, ) = -2(3, -6) = 
(-6, 12). 

0; 

l 
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Chapter 9 

LINEAR MAPS BETWEEN 
EUCLIDEAN SPACES 

9.1 Background 

Topics: linear mappings between finite dimensional spaces, a matrix as a 
linear map, the representation of a linear map as a matrix. 

Proposition 9.1.1. Let T 6 £(V, W )  where V is an n-dimensional vector 
space and W is an in-dimensional vector space and let {e1, e2, . . . , eTL} be a 
basis for V .  Define an m X n-matrix [T] whose kth column (1 < k < no is 
the column vector Ten. Then for each at 6 V we have 

TCU [T]56~ 

The displayed equation above requires a little interpretation. The left 
side is T evaluated at as; the right side is an m X n matrix multiplied by an 
n X l matrix (that is, a column vector). Then the asserted equality can be 
thought of as identifying 

( l)  two vectors in RM , 
(2) two m-tuples of real numbers, or 
(3) two column vectors of length m (that is, two m matrices) . X l 

If we wished to distinguish rigorously between column vectors and row 
vectors and also wished to identify m-tuples with row vectors, then the 

75 
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equation in the preceding proposition would have to read 

TCU i ([T](=v¢))¢ 

To avoid the extra notation in these notes we will not make this distinction. 
In an equation interpret a vector as a row vector or as a column vector in 
any way that makes sense. 

Definition 9.1.2. If V and W are Finite dimensional vector spaces with 
bases and T e £(V, W), then the matrix [T] in the preceding proposi- 
tion is the MATRIX REPRESENTATION of T. It is also called the STANDARD 
MATRIX for T. The RANK of an m X n matrix is the rank of the operator 
on T: R" -> RM it represents (with respect to the standard bases on R" 
and Run), 

9.2 Exercises 

(1) Let T:  R4 -> R3 be defined by 

Tx = (al - 3563 + 134, 21131 -|- S132 -|- £123 -|- 5134, 3582 - 41133 + 7134) 

for every X = (al , 
not prove this.) 

SEQ, $37 1U4 l 6 R4. (The map T is linear, but you need 

(a) Find [T]. Answer: 
l m 1 

• 

(b) Find T(1, -2, 1,3). Answer: 
(c) Find ( m m  -2, 1,3)t))t. Answer: 
(d) Find her T. Answer: kerT = span{ 
(e) Find ranT. Answer: ranT = 

(2) Let T:  R3 -> R4 be defined by 

Tx (131 - 3cu3,a31 + 132 - 6;c3,;u2 - 3a33,a31 - 3a:3 l 

for every X = (5131, $62, k g )  6 R3. (The map T is linear, but you need not 
prove this.) Then 
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(a) [T] 

(b) T(3,-2,4) = 
(c) kerT = span{ 
(d) ranT = span{ 

(3) Let 7% be the vector space of all polynomial functions on R with degree 
strictly less than n. The usual basis for 7% is the set of polynomials 
1,t,t2,t3, . . . , t7n-1 .  Define T: 773 -> 775 by 

Tf(=vl /" /" 0 0 
pltl dt 

x , u € R .  for all 

(a) Then the matrix representation of the linear map T with respect 

to the usual bases for 773 and 775 is 

(b) The kernel of T is 
(c) The range of T is span{ . 

(4) Let 774 be the vector space of polynomials of degree strictly less than 4. 
Consider the linear transformation D2 : 774 -> 774: f +-> f " .  
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(a) Then the matrix representation [192] of D2 (with respect to the usual 

basis {1, t , t2, t3} for 774) is given by [132] 

(b) her D2 
(c) ranD2 

span{ 
span{ 

(5) Let 774 be the vector space of polynomials of degree strictly less than 4 
and T:  774 -> 775 be the linear transformation defined by (Tp)(t) = 
(2 -|- 3t)p(t) for every p e 774 and t e R. Then the matrix representation 
of T (with respect to the usual basis {1, t,  t2, t3} for 774) is given by 

[T] 

is | • 

(6) Let T:  2.3 -> R3 be the linear transformation whose standard matrix 
V1 1 0 '| 

0 1 1 We know that T is not onto because the only vectors 
._1 0 -1 

(u, u, w) that are in the range of T are those that satisfy the relation 
u- I - av - I -bw=0wherea=  a n d b =  . 

(7) Let T be the linear map from to defined by R3 R3 

T(;z:,y,z) = (3:13 + 2 y +  :c+ 32, -y-I-4z). 27 

(a) The matrix representation of T is given by 

[T] 

(b) The range of T is (geometrically speaking) a 
equation is . 

whose 
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9.3 Problems 

(1) Define T: R3 -> R2 by 

Tx = (131 -|- 25132 - 333,332 + 333) 

for all X = (a:1,a:2,a:3) in R3. 

(a) Explain how to find 1T1, the matrix representation for T. 
(be Explain how to use [T] to find T(x) when x = (-1, 2, -1). 
(cz) Explain how to use [T] to find a vector x in R3 such that Tx 

(0, 1). 

Carry out the computations you describe. 

(2) Let 77 be the vector space of all polynomial functions on R with real 
coefficients. Define linear transformations T, D:  77 -> 77 by 

(DpW) i p'(:cl 

and 

(TPXH2) = 332p(;v) 

for all x 6 IR. 
Explain carefully how to find matrix representations for the linear 
transformations D -l- T, DT, and TD (with respect to the usual basis 
{l , t , t2} for the space of polynomials of degree two or less). Carry 
out the computations you describe. Use the resulting matrices to find 
((D + T)(p))(x)» DTp)(a:l, and (TDp)l5ul where p(a7l i 3332 + ex 3 
for all x e IR. 

(3) Define T: R2 -> R3 by 

T X =  (121 - $ 1 , $ 1 + $ 2 )  $132,132 

for all X = (131,132) in R2. 

(a) Explain carefully how to find 1T1, the matrix representation for T. 
(b) How do we use [T] to find T(1, -2)? 
(c) Are there any nonzero vectors X in R2 such that Tx = 7 Explain. 
(d) Under what conditions is a vector (1u,,v,w) in the range of T? 

Explain. 

(4) Let c1(10, 11) be the vector space of all functions defined on the interval 
[0, 11 that have continuous derivatives at each point and C([0, 11) be 

0.  
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the vector space of continuous functions on [0, l]. Define a function 
T: c1([0, 11) -> c([0, 11) by 

0 
(To) f ( t )dt+f ' ( .¢)  

for every x 6 [0, II. 
(a) Prove that the function T is linear. 
(b) Let f(a3) = s i n :  and g(a:) = cost: for all Hz: e [0, l]. Explain why 

one of these functions belongs to the kernel of T while the other 
does not. 

(5) Let 774 be the vector space of polynomials of degree strictly less than 4. 
Consider the linear transformation D2 : 774 -> 774: f +-> f". Explain 
carefully how to find [021, the matrix representation of D2 (with respect 
to the usual basis {1, t, t2, t3} for PA). Then explain how to use 11321 to 
find her D2 and ran D2 . 

(l) (a) 

9.4 Answers to Odd-Numbered Exercises 

'1 0 12 1 1 
n 

1 
1 
7 

|- 
3 -4 

(be (1,4, 11) 
(c) (1,4, I I )  (or [1 4 11]) 
(dl (1,-9,2,5) 
(G) R3 

(3) (a) 1 
2 

'Q 0 Q -  

0 0 0 
0 0 

0 0 1 
6 

0 

(be {0} 

1 
12- 
l l l l l l l l l l  

low 332 
7 1/83 

7 $84 
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(5) 

2 0 0 0 
3 2 0 0 
0 3 2 0 
0 0 3 2 
0 0 0 3 

3 
1 
0 

2 
0 1 1 (7) (a) 3 

-1 4 
(b) plane, - 31) + 2w = 0 'LL 
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Chapter 10 

PROJECTION OPERATORS 

10.1 Background 

Definition 10.1.1. 

Theorem 10.1.2. 

Theorem 10.1.3. 

Topics: projections along one subspace onto another. 

Let V be a vector space and suppose that V = MGBN. 
We know that for each V e V there exist unique vectors In e M and n e N 
such that V = In -|- n (see Problem 5 in Chapter 5). Define a function 
EMN : V -> V by E M N U  = n. The function EMN is the PROJECTION OF 
V ALONG M ONTO N. (Frequently we write E for EMN. But keep in mind 
that E depends on both M and N . )  

Let V be a vector space and suppose that V = M ® N .  
If E is the projection of V along M onto N ,  then 

(i) E is linear; 
(ii) E2 = 

(iii) ran E 
(iv) her E 

Let V be a vector space and suppose that E : V -> V is 
a function which satisfies 

(i) E is linear, and 
(ii) E2 = E .  

Then 

E (that is, E is IDEMPOTENT); 
= N ,  and 
i M .  

V = her E ran E 

and E is the projection of V along herE onto rarE. 
® 

83 
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Theorem 10.1.4. Let V be a vector space and suppose that V = M ® N .  
If E is the projection of V along M onto N ,  then I - E is the projection of 
V along N onto M. 

10.2 Exercises 

(1) Let M be the line y = 21: and N be the y-axis R2. in Then 

[EMN] and [ENM] L ] C a 
a 

, C where a = , b = and . 

(2) Let P be the plane in R3 whose equation is Hz: - Z = 0 and L be the line 
whose equations are y = 0 and as = -Z .  Let E be the projection of R3 
along L onto P and F be the projection of R3 along P onto L. Then 

[E] and [F] 
b 

b b 
b 

a 

a 

where a 

1 a 
[E] = -d 

3 
Cl - 2d 

where a b 

7 b and , C 

Z 

a b a 
b C b 
a b a 

(3) Let P be the plane in R3 whose equation is x -|- 2y - z = 0 and L be 
the line whose equations are § = y = 5- Let E be the projection of R3 
along L onto P and F be the projection of R3 along P onto L. Then 

-b 
d d 

-b + 2d + 2d 

(4) Let P be the plane in R3 whose equation is an - y - 22 = 0 and L be the 
line whose equations are as = 0 and y = -Z .  Let E be the projection 
of R3 along L onto P and F be the projection of R3 along P onto L. 
Then 

C 

C 

and [F] 

7 , C 7 d and , e 

1 3d 36 -3d 
d 

3 2d 26 
e d 

2d 

[E] 
Cl 

a 
Cl 

b b 
C C 

a Cl 

b 
and [F] a 

-a 

b b 
Cl c 

a c 

where a 7 b 7 and C 
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(5) Let E be the projection of R3 along the z-axis onto the plane 3:6 - y -I- 
22 = 0 and let F be the projection of R3 along the plane 31:-y+22 = 0 
onto the z-axis. 

(a) Then [E] 

7 (b) Where does F take the point (4,5, 1)? Answer: ( 
). 

(6) Let M be the y-axis and N be the plane an + y - 2z = 0 in IR3. 

(a) Then the projection EMN of R3 along M onto N is 

7 

(b) The projection ENM takes the vector (3, 2, 1) to l 7 7 

10.3 Problems 

(1) Let E be a projection on a vector space. Show that a vector X belongs to 
the range of E if and only if Ex = X .  Hint. Recall (from Theorems 10.1.2 
and 10.1.3) that a projection is a linear map E such that E2 = E. 

(2) Prove Theorem 10.1.2. 

(3) Prove Theorem 10.1.3. 

(4) Prove Theorem 10.1.4. Hint. Use Theorem 10.1.3. 

(5) Let P be the plane in R3 whose equation is Hz: - z = 0 and L be the line 
whose equations are y = 0 and as = Explain carefully how to find 
the matrix representation of the operator ELP, that is, the projection 
of R3 along L onto P. Carry out the computation you describe. 

(6) Let L be the line in R3 whose equations are an = y and Z = 0, and let P 
be the plane whose equation is as - Z = 0. Explain carefully how to find 
the matrix representation of the operator ELP, that is, the projection 
of R3 along L onto P. Carry out the computation you describe. 

(7) Let P be the plane in R3 whose equation is x - 3y + z = 0 and L be 
the line whose equations are Hz: = -2y = -Z .  Explain carefully how to 
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find the matrix representation of the operator ELP of R3 along L onto 
P and the projection EPL of R3 along P onto L. 

(8) Prove that a linear transformation between vector spaces has a left 
inverse if and only if it is injective. 

(9) Prove that a linear transformation between vector spaces has a right 
inverse if and only if it is surjective. 

10.4 Answers to Odd-Numbered Exercises 

(1) 0, 2, 1 

(3) 0, 6, 3, 2 

' 1 
(5) (a) 0 3 

(b) 0, 0, 

I 
1, 

9 
2 

0 
1 
1 
2 

0 
0 
n 



Part 4 

SPECTRAL THEORY OF 
VECTOR SPACES 



This page intentionally left blank 



Chapter 11 

EIGENVALUES AND 
EIGENVECTORS 

11.1 Background 

Topics: characteristic polynomial, eigenvalues, eigenvectors, eigenspaces, 
algebraic multiplicity and geometric multiplicity of an eigenvalue. 

Definition 11.1.1. A number A is an EIGENVALUE of an operator T on 
a vector space V if Ker(AIv - T) contains a nonzero vector. Any such 
vector is an EIGENVECTOR of T associated with A and Ker(AIv - T) is 
the EIGENSPACE of T associated with A. The set of all eigenvalues of the 
operator T is its (POINT) SPECTRUM and is denoted by 0(T). 

If M is an n X n matrix, then det(AIn - M) (where In is the n X n 
identity matrix) is a polynomial in A of degree n. This is the CHARACTER- 
ISTIC POLYNOMIAL of M. A standard way of computing the eigenvalues 
of an operator T on a finite dimensional vector space is to find the zeros 
of the characteristic polynomial of its matrix representation. It is an easy 
consequence of the multiplicative property of the determinant function (see 
Proposition 2.1.10) that the characteristic polynomial of an operator T on 
a vector space V is independent of the basis chosen for V and hence of the 
particular matrix representation of T that is used. 

Theorem 11.1.2 (Spectral Mapping Theorem). If T is an operator 
on a #nite dimensional vector space and p is a polynomial, then 

(t(p(T)l i p((t(T))~ 
.,As9J}, then o(p(T)) = {p(A1), . . That is, if 0(T) = { 1  7 7 p(I<l}~ 

89 



90 Eazercises and Problems in Linear Algebra 

11.2 Exercises 

'1 1 4 
(1) If A u 7 then the eigenvalue has corresponding 

l. .I 

eigenvector ( 
vector ( 
vector ( 

7 

7 

1, 1 , ), the eigenvalue 
4, 1), and the eigenvalue 
2, 1). 

has corresponding eigen- 
has corresponding eigen- 

(2) Let A I 0 0 2 
0 2 0 
q n n 

(a) The eigenvalues of A are , , and 
(b) The matrix A has a one-dimensional eigenspace. 

It is the span of the vector (1, , ). 
(c) The matrix A has a two-dimensional eigenspace. 

It is the span of the vectors (1, 0, ) and (0, 1, 

(3) Choose b and c in the matrix A an l 0 1 0 
0 0 1 

1. 
SO that the character- 

Answer: Cl 

is tic polynomial of A is -A3 -|- 4A2 -|- 5A + 6. 
, and C = b 7 

(4) Suppose that it is known that the matrix A 
1 0 -1 

\/§ a 17 has eigen- 
2 0 b 

values 2 and 3 and that the eigenvalue 2 has algebraic multiplicity 2. 
Then Cl = and b = . 

1] Cl 

2 
1 

25 
114 (5) The matrices A = d and B = - 48 have the same 

eigenvalues. Then a = and d = 

48 
86 

(6) Let A 
n I 10 1 2 

n n 

(a) The eigenvalues of A are , , and . 
(b) The matrix A has three one-dirnensional eigenspaces. They are 

spanned by the vectors l , , ), ( , , ), 
and ( , , ), respectively. 
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(7) Let A 

1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 

(a) The eigenvalues of A - I are (which has algebraic multiplicity 
) and (which has algebraic multiplicity l. 

(b) The determinant of A - I is 

l 
L 

If 

Q 
1 
l 

(8) Let T be the operator on R3 whose matrix representation is 
1 -1 0 
0 0 0 Then the eigenvalues of the operator T5 - 3T4 -|- T3  - 

2 2 
T 2 + T - 3 ]  are , , a n d  . 

(9) A is a square matrix and A2 = I then its possible eigenvalues are 
, and . 

11.3 Problems 

(1) Suppose that A and B are n X n matrices. Prove that c7(AB) = 07(BA) . 
Hint. Show that if A is an eigenvalue of AB, then it is also an eigenvalue 
of BA. Deal with the cases A = 0 and A Quo 0 separately. 

(2) Let c e R. Suppose that A is an n X n matrix and that the sum of the 
entries in each column of A is C. Prove that c is an eigenvalue of A. 
Hint. Consider the sum of the row vectors of the matrix A - el. 

(3) Prove that every square matrix is the sum of two nonsingular matrices. 
Hint. For the matrix A use A-cI and cl for some appropriate number e. 

(4) This is a problem in cryptography. Read about Hill ciphers, then decode 
the following Hill 3-cipher given that the first two words of the plaintext 
are known to be "My candle". (See for example [11, Section 11.16.) 

OGWGCGWGKK.EWVD.XZJOHZWLNYH USTFAIOS.A.KBN 
JRCENYQZV,IE LTGCGWGKC YYBLSDWWODLBVFFOS.H 

In many discussions of Hill ciphers letters of the alphabet are assigned 
numbers from 0 to 25 and arithmetic is done modulo 26. The encoding 
here is done slightly differently. Here each letter is assigned its numeri- 
cal position in the alphabet (including Z that is assigned 26). Further- 
more, a space between words is assigned 27, a comma is assigned 28, 



92 Eazercises and Problems in Linear Algebra 

and a period is assigned zero. Thus, for this code, all arithmetic should 
be done modulo 29. (One reason for this is that some computer algebra 
systems have problems calculating inverses mod 26.) Note: the cipher- 
text contains exactly three spaces. 

11.4 Answers to Odd-Numbered Exercises 

(1) -2, -1, 1, -1, 3, 

(3) 6, 6, 4 

(5) 2, 6 (or 6, 2) 

(7) (a) -1, 3, 3, 1 
(b) -3 

1 



Chapter 12 

DIAGONALIZATION 
OF MATRICES 

12.1 Background 

Topics: similarity of matrices, triangular and diagonal matrices, diago- 
nalization, annihilating and minimal polynomials, algebraic and geometric 
multiplicity of an eigenvalue, the Cayley-Hamilton theorem. 

Proposition 12.1.2. 

Definition 12.1.1. Two operators R and T on a vector space V are 
SIMILAR if there exists an invertible operator S on V such that R = 5-1T5. 

If V is a vector space, then similarity is an equiva- 
lence relation on £ ( V ) .  

Definition 12.1.3. Let V be a finite dimensional vector space and B = 
{e1, . . . ,e"} be a basis for V. An operator T on V is DIAGONAL if there 
exist scalars a l ,  . . . , a'fl such that Ten' = arek for each k e Nn- Equivalently, 
T is diagonal if its matrix representation [T] = [to] has the property that 
iii = 0 whenever i go j . 

Asking whether a particular operator on some finite dimensional vector 
space is diagonal is, strictly speaking, nonsense. As defined the operator 
property of being diagonal is definitely not a vector space concept. It makes 
sense only for a vector space for which a basis has been specified. This 
important, if obvious, fact seems to go unnoticed in many beginning linear 
algebra texts, due, I suppose, to a rather obsessive fixation on R" in such 
courses. Here is the relevant vector space property. 

93 
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Definition 12.1.4. An operator T on a finite dimensional vector space 
V is DIAGONALIZABLE if there exists a basis for V with respect to which T 
is diagonal. Equivalently, an operator on a finite dimensional vector space 
with basis is diagonalizable if it is similar to a diagonal operator. If a matrix 
D is diagonalizable and A = S-1DS is diagonal, we say that the matrix S 
DIAGONALIZES D. 

X Theorem 12.1.5. Let A be an n n matrix with n linear independent 
eigenvectors. If S is a matrix with these eigenvectors as columns, then S 
diagonalizes A. The entries along the diagonal of the resulting diagonal 
matrix are all eigenvalues of A. 

Definition 12.1.6. A polynomial is MONIC if its leading coefficient is 1. 
Thus a polynomial of degree n is manic if it takes the form 32" +an_1a37n*-1 -I- 
. . . _|_ (1158 _|_ Go . 

Definition 12.1.7. Let p be a polynomial of degree at least one and T 
be an operator on some vector space. We say that p is an ANNIHILATING 
POLYNOMIAL for T (or that p ANNIHILATES T) if p(T) = 0. For example, if 
T3 - IT2 + T  - 7] = 0, then the polynomial p defined by p(a:) = 1:3 - 41:2 -I- 
:u - 7 is an annihilating polynomial for T. 

Definition 12.1.8. Let T be an operator on a finite dimensional vector 
space. The MINIMAL POLYNOMIAL of T is the unique manic polynomial of 
smallest degree which annihilates T. (It is left as a problem to verify the 
existence and the uniqueness of such a polynomial: see problem 8.) 

Theorem 12.1.9 (Cayley-Hamilton Theorem). On a finite dimen- 
sional vector space the characteristic polynomial of an operator T annihi- 
lates T .  

Paraphrase: Every matrix satisfies its characteristic equation. 

Definition 12.1.10. A square matrix A = [Um] is UPPER TRIANGULAR if 
a t '  = 0 whenever 11 > '. A matrix is TRIANGULABLE or TRIANGULARIZ- J J 
ABLE) if it is similar to an upper triangular matrix. 

Theorem 12.1.11. 
space and let {A1, 

Let T be an operator on a #nite dimensional vector 
, As1J} be its distinct eigenvalues. Then: 

(1 )  T is triangle/,lable if and only if its minimal polynomial can be factored 
into a product of linear factors. That is, if and only if there are positive 
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integers To,  . . . ,To such that 

iT(a:l Z (cc - Aw - - (33 - A)" °  

( 2 )  T is diagonalizable if and only if its minimal polynomial has the form 

mT(a:) = (at - A l )  - - (33 - As). 

Corollary 12.1.12. Every operator on a complex finite dimensional vector 
space is triangulable. 

Definition 12.1.13. 
0. atom is 

An operator is NILPOTENT if some power of the oper- 

12.2 Exercises 

S 

'1 11 
1 

1 1 
1 1 
1 1 

. 
-l 

(1) Let A = The characteristic polynomial of A is AP(A - 3)'I 

where p = and q = . 
The minimal polynomial of A is A"(A - 3)"' where T' = 

(2) Let T be the operator on R4 whose matrix representation is 
0 1 0 -1 

-2 3 0 -1 
-2 1 2 -1 . 
2 -1 0 3 

The characteristic polynomial of T is (A - 2)1' where p = 
The minimal polynomial of T is (A - by where T = 

(3) Let T be the operator on R3 whose matrix representation is 
3 1 -1`l 

and 

(a) Find the characteristic polynomial of T. 
Answer: CT(A) = (A - 1)1'(A - Zlq where p 

(b) Find the minimal polynomial of T. 
Answer: MT(A) = (A - 1)""(A - 21 S where T' 

and q 

and S 
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(c) Find the eigenspaces M1 and M2 of T. 
Answer: M1 = span{ } and M2 = span { 

(4) Let T be the operator on R5 whose matrix representation is 
1 0 0 1 -1 
0 1 -2 3 -3 
0 0 -1 2 -2 . 
1 -1 1 0 1 
1 -1 1 -1 2 

• 

(a) Find the characteristic polynomial of T. 
Answer: CT(A) = (A -|- 1)P(A - l)q where p 

(b) Find the minimal polynomial of T. 
Answer: MT(A) = (A+ 1)""(A - 1lS where T' 

(c) Find the eigenspaces VI and VI of T. 
Answer: VI = span { 
$2 = span { 

and q 

and S 

and 
. 

(5) Let T be an operator 
0 0 0 0 0 
0 0 0 0 0 
3 1 0 0 0 . 
0 0 0 1 2 
0 0 0 -1 -1 

whose matrix representation is 

S 

(a) Regarding T as an operator on R5 find its characteristic polyno- 
mial and minimal polynomial. 
Answer: CT(A) = AP(A2 -|- l)'1 where p = and q = 
and MT(A) = X'"(A2 -1- US where r = and 

(b) Regarded as an operator on R5 is T diagonalizable? 
triangulable? . 

(c) Regarded as an operator on Q5 is T diagonalizable? 
triangulable? . 

Is it 

Is it 

(6) Let T 
r 2 

-1 

be the operator on R3 whose matrix representation is 
0 0 
3 2 . 



Diagonalization of Matrices 97 

Cl 

C 

(a) Find the characteristic and minimal polynomials of T. 
Answer: CT(A) = (A - l)p(A - 2)q where p = and q = 
and MT(A) = (A - 1)""(A - 2)"' where r = and s = . 

(b) What can be concluded from the form of the minimal polynomial? 
Answer: . 

(c) Find a matrix S (if one exists) that diagonalizes [T1. What is 
the diagonal form A of [T] produced by this matrix? Answer: 

Cl 1. 
b where Cl = 

-b a b 
A 0 0 
0 ,LL 0 where A = 

n 

II 
CO 4 b and , c 7 

L 1 
7 

< II and p 

and 

(7) Let 
r so 

-18 18 
-6 -3 

11 

T be the operator on R3 whose matrix representation is 
-6 12 

26 

C 

(a) Find the characteristic and minimal polynomials of T. 
Answer: CT(Al = ( A -  5)P(A- 20)q where p = and q = 
and MT(A) = ()-5)"°(A-20)S* where T' = and s = . 

(b) What can be concluded from the form of the minimal polynomial? 
Answer: . 

(c) Find a matrix S (if one exists) that diagonalizes [T1. What is the 
diagonal form A of [T] produced by this matrix? Answer: S = 

Cl b 
d a where a = 
b b 

0 0 
0 ,LL 0 where A = 

a 
c N 

; 1 
7 b , C 7 and d 

< II and p 

7 and 

(8) Let 7% be the space of polynomials of degree strictly less than n and 
D be the differentiation operator on 7% Then 

(a) the only eigenvalue of D is A = , 
(b) the corresponding eigenspace is the span of 7 
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(c) the algebraic multiplicity of A is ; and 
(d) the geometric multiplicity of A is . 

(9) Suppose that A is a 2 X 2 matrix of real numbers, that A2 
that A is neither the identity matrix I nor -I. Then tr A = 
det A = 

I ,  and 
and 

(10) Suppose that A is as in the preceding exercise and that the entries 
in its first row are 3 and -1 (in that order). Then the entries in the 
second row are and . 

12.3 Problems 

(1) Prove that the trace function is a similarity invariant on the family of 
n X n matrices, that is, prove that if A and B are similar n X n matrices, 
then t r A  = tr B. Hint. Prove {'list that if M and N are n X n matrices, 
then MN and NM have the same trace. 

(2) Prove that the determinant function is a similarity invariant on the 
family of n X n matrices, that is, prove that if A and B are similar 
n X n matrices, then det A = det B. 

(3) Prove that if two matrices are diagonalized by the same matrix, then 
they commute. 

(4) Prove that if a matrix A is diagonalizable, then so is every matrix 
similar to A. 

(5) Show that if A is a diagonalizable n X n matrix of real (or complex) 
numbers, then tr A is the sum of the eigenvalues of A and det A is their 
product. 

(6) Suppose that T is an operator on a finite dimensional complex vector 
space and that o(T) = {0}. Show that T is nilpotent. 

(7) Let T be an operator on a finite dimensional vector space. 

(a) Show that if p is an annihilating polynomial for T, then the minimal 
polynomial WET divides p. Hint. Suppose that p annihilates T (so 
that the degree of p is at least as large as the degree of M T ) .  Divide 
p by mf.  Then there exist polynomials q (the quotient) and r (the 
remainder) such that 

p = mfq  -l- 7° and 

Conclude that r = 0. 
degree of T degree of WET . < 
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(b) Show that the minimal polynomial mT and the characteristic poly- 
nomial cT have exactly the same roots (although not necessarily 
the same multiplicities). Hint. To show that every root of mT is 
also a root of CT, it is enough to know that mf divides CT. Why is 
that true? 

To obtain the converse, suppose that A is a root of CT: that is, 
suppose that A is an eigenvalue of T .  Use the spectral mapping 
theorem 11.1.2 to show that MT(A) = 0. 

(8) Let T be an operator on a Finite dimensional vector space V. Show 
that there is a unique manic polynomial of smallest degree which anni- 
hilates T. Hint. This asks for a proof of the existence and the unique- 
ness of the minimal polynomial for the operator T. The existence part is 
easy: If there are any polynomials at all which annihilate T, surely there 
is one of smallest degree. (How do we know that there is at least one 
polynomial that annihilates T?) We want the annihilating polynomial 
of smallest degree to be manic is this a problem? 

To verify the uniqueness of the minimal polynomial, consider the 
case of degree one separately. That is, suppose that p and q are manic 
annihilating polynomials of degree one. How do we know that p = q? 
Then consider polynomials of higher degree. Suppose that p and q are 
manic annihilating polynomials of smallest degree k where k > 1. What 
can you say about p - q? 

12.4 Answers to Odd-Numbered Exercises 

(1) 2, 1, 1, 1 

(3) (a) 1, 2 
(b) 1, 2 
(c) (1,0,2), ( 

(5) (a) 3, 1, 2, 1 
(b) no, no 
(c) no, yes 

1, 1,2) 

(7) (a) 1, 2, 1, 1 
(b) T is diagonalizable 
(c) 2, 1, 0, 3, 5, 20 
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Chapter 13 

SPECTRAL THEOREM 
FOR VECTOR SPACES 

13.1 Background 

Topics: the spectral theorem for #note dimensional vector spaces (writing 
a diagonalizable operator as a linear combination of projections). 

The central fact asserted by the finite dimensional vector space version 
of the spectral theorem is that every diagonalizable operator on such a space 
can be written as a linear combination of projection operators where the 
coefficients of the linear combination are the eigenvalues of the operator 
and the ranges of the projections are the corresponding eigenspaces. Here 
is a formal statement of the theorem. 

Theorem 13.1.1 (Spectral theorem: vector space version). Let T 
be a diagonalizable operator on a #nite dimensional vector space V, and 
Al ,  . . . , As be the (distinct) eigenvalues of T .  For each j let My be the 
eigenspace associated with * j  and Et be the projection of V onto My along 
M1+~~~+mj_1+mi+1+~-~+M,.. Then 

(1) T ; >1E1 -I- 
® I = & + ~  

(iii) EEG = 

~°+A1<=E1<v 

'-l-Ek, and 

see, 

0 when i go j. 

For a proof of this result for example, [6], page 215, Theorem II.  

101 
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13.2 Exercises 

(1) Let T be the operator on R2 whose matrix representation is I -16 171 

(a) Find the characteristic polynomial and minimal polynomial for T. 
Answer: CT(A) = and MT(A) 

(b) The eigenspace M1 associated with the smaller eigenvalue A1 is the 
span of (1, l. 

(c) The eigenspace M2 associated with the larger eigenvalue A2 is the 
span of (1, l. 

(d) We wish to write T as a linear combination of projection operators. 
Find the (matrix representations of the) appropriate projections E1 
and E2 onto the eigenspaces M1 and M2, respectively. 

r 1-l 

Answer: E1 7 where Cl and b 7 and E2 

7 where C and d 

(e) Compute the sum and product of E1 and E2 . 

Answer: E1 -|- E2 7 and E1 E2 

(f) Write T as a linear combination of the projections found in (d) . 
Answer: [T] = E1 -|- E2 . 

(g) Find a matrix S that diagonalizes [T]. What is the associated 
diagonal form A of [T] ? 

Answer: S V ;l» Cl 
where a and b 7 and A 

(2) Let T be the operator on R3 whose matrix representation is 

-6 1 12 
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(a) Find the characteristic polynomial and minimal polynomial for T. 
Answer: CT(A) = and MT(A) 

Answer: E1 
C 

C 

C 

(b) The eigenspace M1 associated with the smallest eigenvalue A1 is 
the span of (3, , l. 

(c) The eigenspace M2 associated with the middle eigenvalue A2 is the 
span of (1, , l. 

(d) The eigenspace M3 associated with the largest eigenvalue A3 is the 
span of (1, , l. 

(e) We wish to write T as a linear combination of projection operators. 
Find the (matrix representations of the) appropriate projections 
El, EQ, and E3 onto the eigenspaces Mi, M2, and M3, respectively. 

Cl Cl -b d 
2a 2a E2 = -2a a and E3 = 
-b -b b -d c 

- I  -a 
-b -2a , where a = 
d 

(f) Write T as a linear combination of the projections found in (e). 
Answer: [T] = E1 -|- E2 -|- E3 . 

(g) Find a matrix S that diagonalizes 1T1. What is the associated 
diagonal form A of [T] ? 

Cl b 
2a Cl 

-e -b 

I 
c 
c 
c 

7 b , C 7 

c 

C 7 

and d 
a 

Answer: S 

II U
 

7 and A 

l 
L 

1 
l 

b 
C where a 

-b 
7 7 b 7 and 

(3) Find a matrix A whose eigenvalues are 1 and 4, and whose eigenvectors 
are (3, 1) and (2, 1), respectively. 

Answer: A 
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-1 
-1 

1 • 

(4) Let T be the operator on R3 whose matrix representation is 
r O _ o  17 

1 
2 0 

(a) Write T as a linear combination of projections. 
Answer: T = C1 E1 -|- C2 E2 + C3 E3 where C1 = 
C3 = 

, C 2  

7 

7 

$1 
b a b 

E2 I b CL b and E3 
b a b I 1 a b -b 

a b -b 
a -b b 

where a = and b = 
(b) Calculate the following: 

b 
b 
b 

a 
a 
a 

-b 
b 
b 

E1 E2 
l 
l 

1 . 
7 $1 Es 

l 
l 

1 
; E2 Es 

(c) E1 +E2 4-E3 

(d) Write T3 as a linear combination of E17 EQ, and E3 . 
Answer: T3 = E1 -|- E2 -|- E3 . 

) 5 ( L e t A 113 
n 

0 
4 
n 

0 

1 3 I 
(a) Find the eigenvalues of A. Answer: The smaller eigenvalue is 

A1 = , and the larger eigenvalue is A2 = . 
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(b) The eigenspace associated with A1 is span{(1, 0, 1 , 0)}; 
and the eigenspace associated with A2 is span{( , 1 , 0)}. 

(c) Find a factorization of A in the form SAS-1 where A is a diagonal 
matrix. 

) , ( ,  

Answer: 
1 
0 

Cl b 
S = -a , A 

a b b 
a 

0 0 
0 0 
0 0 

c 
c 

d 

r J 
L 

L I 7 

J 
j where a = 

and k = . 

(d) Find a square root of A. la b b 
Answer: \/-A = 7 

7 b 

where a 

, c 

7 b 

7 d 

7 

7 J 

and c 

7 

13.3 Problem 

(1) Explain carefully how to use spectral theory (the theory of eigenvalues 
V 10 

and eigenvectors) to find a square root of the matrix A = 10] . 
I 

Illustrate your discussion by carrying out the computation. 

13.4 Answers to Odd-Numbered Exercises 

(l) (a) A2 
(be 1 
(c) 2 
(dl 2, -1 

(Q) 

(f) 9 

(Q) 2, 

9, $2 10A+ - 10)+9  

2 

1 0 0 0 
0 1 0 0 

1, 
1 0 

1 
7 0 9 

{ N ] 
N 
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(3) 
-5 
-3 

18 
10 

(5) (a) 
(b) 
(c) 
(d) 

1, 
1, 
1, 
1, 

4 
_L 
0, 1, 4, 
0, 2 

0 
0, 1 



Chapter 14 

SOME APPLICATIONS OF THE 
SPECTRAL TI-IEOREM 

14.1 Background 

Topics: systems of linear differential equations, initial conditions, steady 
state solutions, the functional calculus for operators on finite dimensional 
vector spaces, Markov processes. 

Theorem 14.1.1. Let 

du i Au 14.1.1 
dt 

be a vector Di]§"erential equation (that is, a system of ordinary linear difer- 
ential equations where A is an n X n matrix and suppose that U0 = u(0) 
is an initial value of the system. If A is a diagonalizable matrix (so that 
A = SAS for some diagonal matrix A and some inuertible matrix S ) ,  
then the equation (14.1.1l has the solution 

u(t) = lAi = 5eAt5-1 

A MARKOV MATRIX is a square matrix with nonneg- 
ative entries and with each column adding to 1. 

U0 II() . 

Definition 14.1.2. 

( ) 

Proposition 14.1.3 (Facts about Markov matrices.). L e t A  be a 

1 

Markov matrix. Then 

( i )  A1 = is an eigenvalue. 
(ii) The eigenvector corresponding to A1 is nonnegative and it is a 

steady state. 
81 

107 
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u 

(iii) The other eigenvalues satisfy IAkl < 1. 
(iv If any power of A has all entries strictly positive, then IAkl < 1 for all 

k go 1 and Akug -> oo where the steady state oo is a multiple of 81 . u 

14.2 Exercises 

(1) Let A 

(a) The eigenvalues of A are A1 = and A2 = . 
(b) The corresponding eigenvectors are = (La )  and = (a, -a) 

where a i 

81 82 

(c) Then 

:c(tl 

sAt 
bt ] where a and b _ C L  l + e - b t  1 - e -b t  

- 1 - e 1 -|- e 
(d) Let u(t) = (;z:(t), y(t)). The general solution to the system of equa- 

. du . . . .  . .  tlons = Au wlth initial conditions 51:0 

a +  be-et and y(tl = a -  be-ct , and 
= 3 and Yo = 1 is 

wheres=  b =  7 

c 

(e) 
. • d Find the steady state solution to the system 

initial conditions given in (d). That is, find 

:COO = limt_,oo ;v(tl and yOO = 1im1&_>00 y(t). 

u OO 

Au under the 

where 

Answer: u OO 

(2) Suppose that at time t the population y(t) of a predator and the 
population a:(t) of its prey are governed by the equations 

% = 456 - 29 

do 

If at time t = 0 the populations are x = 300 and y = 200, then 
the populations at all future times t are ;c(t) = asbt + 200eet and 
y(t) = debt + bect where a = , b = , c = , and d = . 
The long run ratio of populations of prey to predator approaches 
to . 

:u-l-y. 
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'u,+2v- 'w 

(3) Use matrix methods to solve the initial value problem consisting of 
the system of differential equations 

d = nu - 'U - 'w 

do _ 
dt - 

dw 
= u - U 

dt 
and the initial conditions 

'u,(0l = 2 11(0) = -2 w(0) = 7. 

Answer: u(t) and w(t) = bebt + de" 
wheres=  b =  , a n d d =  . 

(4) Consider the initial value problem: y" - y' - 2y = 0 with the initial 
conditions Yo = 3 and 3/6 = 3. 

+ 2 w  

a€bt 

7 

eat ;  'u(t) 
, C 

0€bt  a t .  Co 7 

(a) Express the differential equation in the form it = Au where 
du 
l l l l l l l l l - - _  

u 
1_ ̀ l 

(y, z) and Z = y'. Then A is the matrix where a 1 7 

b , C and . 
(be The smaller eigenvalue of A is 

corresponding eigenvectors are ( 
and b = 

1, 
and the larger is 

a) and (Lb) where Cl 

The 

(c) 

(el 

[ ] a 
where a 

[ ] 

The diagonal form of A is A = 0 O 
b = 

b i . 
(d) Find the diagonalizing matrix S for A. That is, find S so that 

A = S-1AS. Answer: S = 1 ; where a = = 

The matrix is 1 -|- = 

b = , c = , and d = . 
(f) The solution to the initial value problem is y(t) = 

sAt 
beet _*_ edt 

-beet + bedt 

_act edt 

ect -|- bedt 

and b 

where a 

and 

7 

3y//_l_2y/ 
(5) Use the spectral theorem to solve the initial value problem 

y / / /  

where y(0) = 2, 3/(0) = 0, and y"(0) = 3. 

0 
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Answer: y(t) 
and d = 

Cl + bet + cent where a 7 b , c 7 

1 
Q' > (6) Let G0 = 0 and G1 For each k 0 let Gk:+2 be the average of 

Go and Gk_l_1. 

(a) Find the transition matrix A that takes the vector (G1¢+1, Go) to 
the vector (Gk-2, Gk:+1). 

Answer: A 

(b) Find a diagonal matrix A that is similar to A. 

Answer: A 

(c) Find a matrix S such that A = SAS-1. 

Answer: S 

(d) Determine the long run behavior of the numbers Go . 
Answer: GOO := lirnk__,oo Go = 

(7) Let T be the operator on R2 whose matrix representation is 

V _ 16 17l' Use the spectral theorem to find \/T. (A square root of T 

is an operator whose square is T.) 

Answer: \/T = f -1  ,~.ll where Cl = 7 b and , C 
L 

(8) { 1 4 3 L A i 

et 1 2 
approximation.) 

Find A100. (Write an exact answer not a decimal 

Answer: A100 4 
1 
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1 

(9) Let T be the operator on 
F o  _ o  11 

1 
2 0 

-1 
-1 

I • 
R3 whose matrix representation is 

as (a) Write T a linear combination of projections. 
Answer: T = C1 E1 + c2 E2 -|- C3 E3 where 01 = , C 2  7 

C3 7 

$1 1 Cl 

Cl 

Cl 

where a 

b -b 
b -b 

-b b 
and b 

7 E2 
b a b 
b a b 
b a b 1 7 and E3 

b 
b 
b 

a 
a 
a 

-b 
b 
b 

(b) Calculate the following: E1 E2 7 E1 E3 

7 E2 E3 

(c) E1'l'E2'l'E3 

(d) Write T3 as a linear combination of E17 EQ, and E3 . 
Answer: T3 = E1 -|- E2 -|- E3 . 

(10) Let A be the matrix whose eigenvalues are A1 17 A2 

and >3 1/3, and whose corresponding eigenvectors are 81 

I2, 1 
1 
0 
1 H 7 

1 0 
82 - 1 and - 1 

0 0 M e U 3 
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(a) Solve the difference equation Xk+1 

subject to the initial condition X0 H 
Axk (where 

10 
20 
30 

Xi H 
Answer: Uk 

7 b 
cdr , and 'Wk , U p  

7 , C 

a(-blk cdr' = = a(-b)k where 
a = and d = . 

(b) Each Xi can be written as a linear combination of the vectors 
( , , ) and ( , , l. 

(c) The value of X1000 is approximately ( 7 7 

Ax subject to the initial conditions X0 

sect 
7 sect 

(11) Let A be as in the preceding exercise. Solve the differential equa- 
10 . dx 

son it 20 Answer: 
30 

x(t)  = (be-t ,be-t) where a = , b = and . 

(12) Suppose three cities A, B, and C are centers for trucks. Every month 
half of the trucks in A and half of those in B go to C. The other half 
of the trucks in A and the other half of the trucks in B stay where 
they are. Every month half of the trucks in C go to A and the other 
half go to B. 

(a) What is the (Markov) transition matrix that acts on the vector 
GO 

60 (where 00 is the number of trucks initially in A, etc.)? 

H 
, c 

C0 H 
Answer: 

(b) If there are always 450 trucks, what is the long run distribution 
of trucks? Answer: 0OO = , bOO = . , C o o  

14.3 Problems 

(1) Initially a 2100 gallon tank M is full of water and an 1800 gallon tank 
N is full of water in which 100 pounds of salt has been dissolved. Fresh 
water is pumped into tank M at a rate of 420 gallons per minute and 
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salt water is released from tank N at the same rate. Additionally, the 
contents of M are pumped into N at a rate of 490 gallons per minute 
and the contents of N are pumped into M at a rate sufficient to keep 
both tanks full. 

How long does it take (to the nearest second) for the concentration 
of salt in tank M to reach a maximum? And how much salt is there 
(to three significant figures) in M at that time? 

(2) Show that if A is a diagonalizable n 

det(exp A) = exp(tr A). 

Hint. What would be a reasonable definition of exp A if A were a diag- 
onal matrix? 

X n matrix, then 

(3) Explain carefully how to use matrix methods to solve the initial value 
problem 

in _ y/ 6 y = 0  

2 and 3/6 under the initial conditions Yo 
potations you describe. 

14. Carry out the com- 

(4) Explain carefully how to use matrix methods to solve the initial value 
problem consisting of the system of differential equations 

do 
dt 

dw 
dt 

v + ' w  

'U w 
and the initial conditions v(0) 

w(0) 

Carry out the computation you describe. 

(5) Show how to  use the spectral theorem to solve the initial value problem 
consisting of the system of differential equations 

du 

do 
5 
dw 
dt 

7u 5114-5w 

2u-I-310-2w 

So $114-6w 

and the initial conditions 

u(0) = 2 'u(0) 1 w(0) 1. 
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of the matrix A 

the computation. 

0 1 0 
(7) Let A 0 0 0 

n n 

(6) Explain carefully how to use the spectral theorem to find a square root 
2 1 • . . 2] . Illustrate your dlscusslon by carrying out 

(a) Does A have a cube root? Explain. 
(b) Does A have a square root? Explain. 

(8) Let A be a symmetric 2 X 2 matrix whose trace is 20 and whose deter- 
minant is 64. Suppose that the eigenspace associated with the smaller 
eigenvalue of A is the line as-y = 0. Find a matrix B such that 82 = A. 

14.4 Answers to Odd-Numbered Exercises 

2 

(e) 

(1) (a) 0, -2 
(b) 5 
(c) 2» 
(d) 2, 1, 2 

2 
2 

(3) 3, 2, 5, 4 
7 3 

(5) 2 2' 
(Y) 2, -4, 5 

(9) la) -1: 7 

H 
3, 2 

1 
3, 0, 

2 

(be 

(c) 

1 

0 0 0 
0 0 0 
0 0 0 

1 0 0 
0 1 0 
0 0 1 

1 
1 

7 

(d) -1, , 2 7  

(11) 30, 20, 2 

0 0 0 
0 0 0 
0 0 0 

7 

0 
0 
0 

0 
0 
0 

0 
0 
0 



Chapter 15 

EVERY OPERATOR IS 
DIAGONALIZABLE PLUS 

NILPOTENT 

15.1 Background 

Topics: generalized eigenspaces, nilpotent operators 

Definition 15.1.1. An operator T on a vector space is NILPOTENT if 
T" = 0 for some n e N. Similarly, a square matrix is NILPOTENT if some 
power of it is the zero matrix. 

Theorem 15.1.2. Let T be an operator on a finite dimensional vector 
space V .  Suppose that the minimal polynomial for T factors completely 
into linear factors 

mT(a:) = (cc - A • • • (33 - 1<:)'" 

where A l ,  . . . As are the (clistinetl eigenvalues of T .  For each j let WJ 
ker(T - API)"°j and Et be the projection of V onto We along W1 -|- ' - ' 

Wj_1 + Wj+1 + ' ' ' + Wk. Then 
+ 

V=W1€BW2€B°-° Wk, ® 

each WJ is invariant under T, and 
operator 

I E1 + -|- Ek. Furthermore, the 

D A1E1 -I--°-I-)v¢E1'C> 

115 



116 Exercises and Problems in Linear Algebra 

is diagonalizable, the operator 

N T D 

Corollary 15.1.3. 

is nilpotent, and N eommates with D. 

A proof of this theorem can be found in [6], pages 220-223. 

Every operator on a finite dimensional complex vector 
space is the sum of a diagonal operator and a nilpotent one. 

Definition 15.1.4. Since, in the preceding theorem, T = D + N where D 
is diagonalizable and N is nilpotent, we say that D is the DIAGONALIZABLE 
PART of T and N is the NILPOTENT PART of T. The subspace WJ = ker(T - 
* j  I)"°i is GENERALIZED EIGENSPACE associated with the eigenvalue As . 

15.2 Exercises 

(1) Let T be the operator on R2 whose matrix representation is u 
(a) Explain briefly why T is not diagonalizable. 

Answer: 

(b) Find the diagonalizable and nilpotent parts of T. Answer: D 
Cl 

b { b] [ 1 and N C a 
C where a = , b 

-C C 
and , c 

(2) Let T be the operator on R2 whose matrix representation is u 

{ 1 

(a) Explain briefly why T is not diagonalizable. 
Answer: • 

(b) Find the diagonalizable and nilpotent parts of T. Answer: 

D = and N = [ 1 
R3 (3) Let T be the operator on whose matrix representation is 

1 1 0 
0 1 0 
0 0 0 

(a) The characteristic polynomial of T is (A)P(A 
and q = . 

1 )q where p 
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S (1b) The minimal polynomial of T is ( y n (  - where r 1 and 
S 

W2 is 

a 
a 
a 

(c) Explain briefly how we know from (b) that T is not diagonalizable. 
Answer: • 

(d) The eigenspace M1 (corresponding to the smaller eigenvalue of T) 
is span{( , , l)} and the eigenspace M2 (corresponding to 
the larger eigenvalue) is span{(l, , )}. 

(e) Explain briefly how we know from (d) that T is not diagonalizable. 
Answer: • 

(f) The generalized eigenspace W1 (corresponding to the smaller 
eigenvalue) is W1 = span{( , , l)} and the general- 
ized eigenspace W2 (corresponding to the larger eigenvalue) is 
span{(l,a,a), (a, l,a)}, where a = . 

(g) The (matrix representing the) projection E1 of R3 along W2 onto 
Cl a 

W1 is Cl a where Cl = 
Cl b 

(h) The (matrix representing the) projection E2 of R3 along W1 onto 
b b 

b a b where a = 
b b b 

and b 

a 

1 
1 and b 

(i) The diagonalizable part of T is D 
part of T is 

b a b 
N = b b b where a = 

b b b 1 and b 

1 a b b 
b a b and the nilpotent 
b b b 

a a 
a a 

b 
(j) A matrix S that diagonalizes D is b where a 

b a a 1 and 

-D
 II 

a Cl a 
(k) The diagonal form A of the diagonalizable part D of T is a b a 

a Cl b 1 
where a = and b = . 

(1) Show that D commutes with N by computing DN and N D .  
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Cl b 
Answer: DN = ND = a Cl where a 

_Cl a a_ 

Cl 

Cl and b 

R3 (4) Let T be the operator on whose matrix representation is 
1 1 0 
0 1 1 
0 0 0 1 

(a) The characteristic polynomial of T is (A)P(A - 1)q where p 
and q = . 

(be The minimal polynomial of T is ( y n (  - 11S where 7° = and 
S 

a Cl 

a Cl 

Cl 

(c) Explain briefly how we know from (b) that T is not diagonalizable. 
Answer: • 

(d) The eigenspace M1 (corresponding to the smaller eigenvalue of T) 
is span{(1, , )} and the eigenspace M2 (corresponding to 
the larger eigenvalue) is span{(l, , )} 

(e) Explain briefly how we know from (d) that T is not diagonalizable. 
Answer: • 

(f) The generalized eigenspace W1 (corresponding to the smaller 
eigenvalue) is W1 = span{(l, , )} and the general- 
ized eigenspace W2 (corresponding to the larger eigenvalue) is 
span{(l,a,a), (a, l,a)}, where a = . 

(g) The (matrix representing the) projection E1 of R3 along W2 onto 
b 

W1 is -b where a = 
a b 

a b 
W2 is b a where a = 

_b b 

and b 

(h) The (matrix representing the) projection E2 of R3 along W1 onto I 1 
and b 

b 

(i) The diagonalizable part of T is D 
part of T is 

b a Cl 

N i b b b 
b b b 1 where a 

_b b 

and b 

b 
and the nilpotent 
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(j) A matrix S that diagonalizes D is -a b al wheres and 

-D
 II 

Cl 

(k) The diagonal form A of the diagonalizable part D of T is a b 
a Cl b 

a a 
a 1 

n 

where a = and b = . 
(1) When comparing this exercise with the preceding one it may seem 

that the correct answer to part (i) should be that the diagonal- 
1 0 0 

izable part of T is D 0 1 0 and the nilpotent part of [T] 
0 1 0 0 0 0 

is N 0 0 1 because D is diagonal, N is nilpotent, and 
1 

[T] = D + N. Explain briefly why this is not correct. 

Answer: 

(5) Let T be the operator on R3 whose matrix representation is 
a 1 -1] 

l)t'(A (a) The characteristic polynomial of T is (A - 2)q where p = 
and q = . 

(b) The minimal polynomial of T is (A - lfrf( - QlS where 7° = 
and S i . 

(c) The eigenspace M1 (corresponding to the smaller eigenvalue of T) 
is span{(l, , )} and the eigenspace M2 (corresponding to 
the larger eigenvalue) is span{(l, , )}. 

(d) The generalized eigenspace W1 (corresponding to the smaller eigen- 
value) is span{(1, , )} and the generalized eigenspace W2 
(corresponding to the larger eigenvalue) is span{(l, a, b), (0, b, a)}, 
where a = and b = . 

1 
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(e) The diagonalizable part of T is D 
a b 

b and the nilpotent 

part of T is 
n L r 

N where Cl 7 b and , C 

lzc b 

a a b 
(f) A matrix S that diagonalizes D is b a b where a 

c b a 1 7 

b and , C 

(g) The diagonal form A of the diagonalizable part D of T is 
VX n no 

0 | where A = and ,LL ,U 

(h) Show that D commutes with N by computing DN and ND. 
Cl IJ -C 

Answer: DN = ND = Cl IJ -c where a = 
2a b -a 1 7 b 7 and 

II U
 

(6) Let T be the operator on R4 whose matrix representation is 
0 1 0 -1 

-2 3 0 -1 
-2 1 2 -1 . 
2 -1 0 3 

(c) 

(a) The characteristic polynomial of T is (A - 2)1' where p 
(b) The minimal polynomial of T is (A - by where T' = 

b b b 
b a b b 
b b a b 
b b b a 

a 

The diagonalizable part of T is D where Cl 

and b 
-a 

. • -CL (d) The nilpotent part of T 1S N = _CL 

b = , and C = . CL 

b 
b 
b 
b 

c 
c -b 

-b 
c _ b  where Cl 

c b 

7 
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(7) Let T be the operator on R5 whose matrix representation is 
1 0 0 1 -1 
0 1 -2 3 -3 
0 0 -1 2 -2 . 
1 -1 1 0 1 
1 -1 1 -1 2 

(a) Find the characteristic polynomial of T. 

Answer: CT(A) = (A + 1)*°(A - 1)q where p = 

(b) Find the minimal polynomial of T. 

Answer: MT(A) = (A + 1)"°(A - 1)S where r = 

(c) Find the eigenspaees M1 and M2 of T. 

Answer: M1 = span{(a, 1, b, a, 0)} where a = 

M2 = span{(l, a,b, b,b), (b,b, b, l ,a)} where a 
(d) Find the diagonalizable part of T. 

and q 

and S 

and b 

and b 
7 and 

Answer: D 

a b 
b Cl 

b b 
b b 
b b 

b b b 
-C C - C  

-a C - C  where a 
b Cl b 
b b a 

7 b 7 and 

c 

(e) Find the nilpotent part of T. 

Cl a a b -b 
Cl a a b -b 

Answer: N Z Cl a a Cl a 
b -b b -b b 
b -b b -b b 

where a and b 

(f) Find a matrix S that diagonalizes the diagonalizable part D of T. 
What is the diagonal form A of D associated with this matrix? 

Answer: S 

Cl b 
b 
b 

Cl 

a 
a 
b 
b 

a 
a 
b 
b 
a 

Cl 

b 
Cl 

Cl 

Cl 

a 
a 
a 
a 

Cl 

Cl 

w h e r e a and b 
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and A 
0 
0 
0 
0 

Cl 

a 

0 
0 
0 
0 

0 
0 
0 

0 

0 
0 

0 
0 

0 

0 
0 
0 

Cl 

a 

w h e r e a 

15.3 Problems 

of the matrix A 

(1) Explain in detail how to find the diagonalizable and nilpotent parts 
V-3 -4 5 7 

-6 Carry out the computations you 
4 

| • 

-2 1 
describe. 

(2) Consider the matrix A 
2 0 
0 0 
n n 

2 
2 
n 

In each part below explain 
|- 

carefully what you are doing. 

(a) Find the characteristic polynomial for A. 
(b) Find the minimal polynomial for A. What can you conclude from 

the form of the minimal polynomial? 
(c) Find the eigenspace associated with each eigenvalue of A. Do the 

eigenvectors of A span R3? What can you conclude from this? 
(d) Find the generalized eigenspaces W1 and W2 associated with the 

eigenvalues of A. 
(e) Find the projection operators E1 of R3 onto W1 along W2 and E2 

of R3 onto W2 along W1 . 
(f) Find the diagonalizable part D of A. Express D both as a single 

matrix and as a linear combination of projections. 
(g) Find a matrix S that diagonalizes D. What is the resulting diagonal 

form A of D? 
(h) Find the nilpotent part N of A. What is the smallest power of N 

that vanishes? 

(3) Let T be the operator on R3 whose matrix representation is 
VI -1 0 7 

(a) Explain how to find the characteristic polynomial for T. Then carry 
out the computation. 
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(b) What is the minimal polynomial for a matrix? Find the minimal 
polynomial for T and explain how you know your answer is correct . 
What can you conclude from the form of this polynomial? 

(c) Find the eigenspaces associated with each eigenvalue of T. Do the 
eigenvectors of T span R3? What can you conclude from this? 

(d) Find the generalized eigenspaces W1 and W2 associated with the 
eigenvalues of T. 

(e) Find the projection operators E1 of R3 onto W1 along W2 and E2 
of R3 onto W2 along W1 . 

(f) Find the diagonalizable part D of T. Express D both as a single 
matrix and as a linear combination of projections. 

(g) Find a matrix S that diagonalizes D. What is the resulting diagonal 
form A of D? 

(ii) Find the nilpotent part N of T. What is the smallest power of N 
that vanishes? 

15.4 Answers to Odd-Numbered Exercises 

has a second factor 

(1) (a) The single one-dimensional eigenspace does not span R2. (OR: the 
minimal polynomial (A - 3>2 has a second degree factor 
theorem 12.1.11.1 

(b) 3, 0, 1 

(3) (21) 1, 2 
(b) 1, 2 
(c) The minimal polynomial degree (see 

Theorem 12111). 
(d) 0, 0, 0, 0 
(e) The eigenspaces do not span R3 . 
(f) 0, 0, 0 
(s) 0, 1 
(h) 1, 0 
(1) 1, 0 
(J) 0, 1 
(k) 0, 1 
(1) 0, 1 

see 

1, 
1, 

(5) (a) 2 
(b) 2 
(c) 0, 2, 2 1, 
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(d) 0, 2, 1, 0 
(e) 1, 0, 2 
(f) 1, 0, 2 
(Q) 1, 2 
(1@) 4, 0, 2 

(7) (21) 1, 4 
(b) 1, 2 
(c) 0, 
(d) 1, 0, 2 
(Q) 0, 
(f) 0, 

1, 1, 0 
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THE GEOMETRY OF 
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Chapter 16 

COMPLEX ARITHMETIC 

16.1 Background 

Topics: complex arithmetic, absolute value and argument of a complex 
number, De Moivre 's theorem. 

Notation 16.1.1. Let Cl and b be real numbers and Z = a -|- bi. Then 
Red := a (the REAL PART of z) and I m p  := b (the IMAGINARY PART of z). 

16.2 

(3) * 

Exercises 

(1) Re I 
' 2  

(2) Img2  

21 + 7'£ 

2-I-3?\ 
3-411/ 

- 3 ¢ \  _ 
-l-311/ 

|=av-bwherea 
1 Qi 

and b 

Z 
- (1-I-2vgli 
1+2i  
7 we = 

210 = a(1 -bi) where 

, and Are 210 = 

a 

(4) Are(-Qf + 27) = 

(5) Let 2 ' . Then 

and b = 

1 • 365 \/5 (1-2), then Z 

(7) The cube roots of -27 are a + bi, a - bi, and c -|- di where a 
b = , C = , and d = . 

(6) If z a -|- bi where a and b 

7 

127 
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(11) Let A 

II 6 

(12) If A 

A 1 

in, Z2 (12, 0, 
Z17 Z27Z3}  

i 7 Z3 Qi, 7 + 3'£). 
by finding 

5 

QQ 
1 1 

1 
0 0 

i 
i Then the rank of A is 

0 

(8) The complex number w = 
these roots is a + bi where a = . 

(9) Let Z1 = (1, to, l + I (-1 l + 
Show that the set { 
scalars a and such that 
Answer: a Z 

Qi 

problem: y" + 49 = 0 with the initial condi- 

1 + 21 has 13 thirteenth roots. The sum of 
and b = 

1 and , 
is linearly dependent in (23 

O5Z1 -1- Bz2 - z3 = 0. 
and B = 

1 

(10) Let A - 1 
0 1 + i 
2 2 

nullity of A is 

b Z 

i 
-21 
2 

at 
do 

-a + bi 
C = , and d = 

(13) Consider the initial value 
sons = 3 and 3/6 = 2. 

1 -2a 
Then A-1 a + b 

a - b 2 

C 

a b 
a + b  

0 
1 

i i 
a 
Cl 

7 then 
-z' 

-1-4 i  
3 
IN-ai -a- l -b i  

- c + a i  - a - d i  
IN-ai -a- l -b i  

where a 7 

2b 
c 
c 

b 

and the 

where 

Yo 

7 

u 

du 

(y, 2) 

l l l l l l l l l l l l -  

Z 

(a) Express the differential equation in the form it = Au where 
r 

and = y' . Then A is the matrix 

a = , b = , and C = . 
(b) The eigenvalues of A are and , and the corresponding 

eigenvectors are (1, al and (l,  -a) where a = . 

(c) The diagonal form of A is A = where a = 

(d) Find the diagonalizing matrix S for A. That is, find S so that 
r '| 

A = S-1AS. Answer: S = 1 1 where a = 

'I l ' \  

where 
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not complex exponentials. Answer: eA¢ 

7 f( t l  Z b 

(e) Find the matrix €A¢. Express your answer in terms of real trigono- 
metric functions 

r' f ( t l  CL QU) where a = 
L -696) f ( t l  
and g(t) = . 

(f) The solution to the initial value problem is y(t) = 

7 7 

16.3 Problems 

2 
Z1 

(1) Explain in detail how to find all the cube roots of ii. 

(2) Show that three points 217 Z2, and Z3 in the complex plane form an 
equilateral triangle if and only if 

+ + 2 
2 Z2 Z3 = Z1Z2 + Z1Z3 -|- Z2Z3. 

16.4 Answers to Odd-Numbered Exercises 

<1 

3 3, 0 

_ Q  
25 

(3) 7, 2 

(5) 512, \/5, 1024, -g 
w (7) 27 3 2 3 7  

(9) 2 -2 ,  l + 32 

(11) 1, 2, 0 

(13) (a) 0, 1, 4 
(b) 22, -22, 22 
(c) 22 
(dl 22 
(e) 2, 2, cos 22, sin 215, 
(f) 3cos2t-I-sin2t 
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Chapter 17 

REAL AND COMPLEX INNER 
PRODUCT SPACES 

17.1 Background 

Topics: inner products in real and complex vector spaces, the Schwarz 
inequality, the parallelogram law, the Pythagorean theorem, the norm 
induced by an inner product, the metric induced by a norm, orthogonal 
(or perpendicular) vectors, the angle between two vectors, rowspace and 
columnspace of a matrix. 

Definition 17.1.1. Let V be a (real or complex) vector space. A function 
that associates to each pair of vectors X and y in V a (real or complex) num- 
ber (x, y) (often written X - yl is an INNER PRODUCT (or a DOT PRODUCT) 
on V provided that the following four conditions are satisfied: 

(al If x, y, then Q V ,  Z 

(b) I f x , y  

y , z  ( x +  = (x,z) + (mz)- 

6 V and a 6 (I (or R), then 

(0(x,y) = 0¢xx,y)~ 

(cl Q V, If x, y then 

X 

(kJ) = (mx)- 

(d) For every nonzero in V we have (x, X) > 0. 

131 
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Conditions (a) and (b) show that an inner product is linear in its first 
variable. It is easy to see that an inner product is conjugate linear in its 
second variable. (A complex valued function f on V is CONJUGATE LINEAR 
if f (x  + Y) = f(x) -|- f(y) and f(0x) = Ef(x) for all x, y e V and 
a e C.) When a mapping is linear in one variable and conjugate linear 
in the other, it is often called SESQUILINEAR (the prefix "sesqui-" means 
"one and a half"). Taken together conditions (a)-(d) say that the inner 
product is a positive definite conjugate symmetric sesquilinear form. When 
a vector space has been equipped with an inner product we define the NORM 
(or LENGTH) of a vector X by 

IIxII :z V<X>» 
(Notice that this is the same definition we used in 3.1.2 for vectors in RTL.) 

Notation 17.1.2. There are many more or less standard notations for 
the inner product of two vectors X and y. The two that we will use inter- 
changeably in these exercises are X - y and ( x ,  y) . 

Example 17.1.3. For vectors 
belonging to define Rn 

as 3817 $ 2 , . . . ,  n) and y Z (y1,y2, • • 

'al 

k=1 
Rn Then is an inner product space. 

For vectors 
belonging to define 
Example 17.1.-4. as 

(In 
3817 1-27 7 son) and y = (Y1,Y21 aYn 

'al 

(at, y) x k y k ,  
k 1 

(Zn Then is an inner product space. 

Example 17.1.5. Let Z2 be the set of all square summable sequences 
of complex numbers. (A sequence as = l$Ukl1'Q:=1 is SQUARE SUMMABLE if 
2121 lxkl2 < oo.) (The vector space operations are defined pointwise.) For 
vectors x = (131, 332, . . . ) and y = (y1, YE7 . . . ) belonging to Z2 define 

OO 

(at, y) 
k=1 

Then Z2 is an inner product space. (It is important to recognize that in 
order for this definition to make sense, it must be verified that the infinite 
series actually converges.) 
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< Example 1'7.1.6. For a b let C([a, b]) be the family of all continuous 
complex valued functions on the interval [a,b]. For every f ,  g e C([a, b1) 
define 

b 

(f,9) f(11)9(tl ds. 
a 

y X y 

<(x, y)  

Then C([a, b]) is an inner product space. 

Definition 17.1.7. Let X and y be nonzero vectors in a real vector 
space V. Then &(x, ), the ANGLE between and , is defined by 

_ (x, y) arccos • IIxII llyll 
(Notice that this is the same definition as the one given in 3.1.3 for vectors 
in R".I 
Definition 17.1.8. Two vectors X and y in an inner product space V 
are ORTHOGONAL (or PERPENDICULAR) if (x, y) = 0. In this case we write 
X J_ y. Similarly if M and N are nonempty subsets of Vwe write M J_ N 
if every vector in M is orthogonal to every vector in N. When one of the 
sets consists of a single vector we write x J_ N instead of {a:} J_ N. When 
M is a nonempty subset of V we denote by M-L the set of all vectors as such 
that 33 J_ M. This is the ORTHOGONAL COMPLEMENT of M .  

Definition 17.1.9. A real valued function f on an inner product space V 
is UNIFORMLY CONTINUOUS if for every number 6 > 0 there exists a number 
5 > 0 such that lf(a3) - f(y)l  < 6 whenever llx - yll < 5 in V. 

Theorem 17.1.10 (Cauchy-Schwarz inequality). 

The following result is one we have already seen for R" (see 3.1.4). 

If X and y are vec- 
tors in a (real 07" eomplexl inner product space, then 

l(x,y)l _< IIxII Ilyll- 

17.2 Exercises 

In (33 

In 

(1 let X 

IIxII Z 

(2) (22 let X 

Ilyll Z 

= (3 + Qi, l - 
; Ilyll = ; 
= (2 - 4i,4i) 
; and (x, y) = 

y am) and = (1 - 21z, - i,4 + pa). 
and lx, y) = 

and (2 4i,4). 

1 

y = -|- Then llxll 

Then 

7 
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In 
y 1 

(3) (c2 let X = (3 - Qi, ii) and y = (1 + i, 1 - z). Then IIxII = 
= , a n d  (x, ) =  - \ f+(v 'a -b) i  wheres = 

b Z • 

(4) Make the family of 2 X 2 matrices of real numbers into an inner 
product space by defining (A, B) := tr(AtB) (see problem 8) for A, 

1 4 Q2 a - 1 B M L t U Z d V Z 

e -3 5 an a + l -1 
values of a such that U J_ V in the inner product space 2,2lR). 
Answer: a = and 

Q aIR). [ 1 { 

7 

and 

Find all 

M 

(5) Let w 

Z 

7 

0, 

X 7 

i i i 2'£ 'i 'i 
Z 7 7 7 7 y Z W W \/5 W W \/5 

'i i 2'£ i i 
7 7 - 7 and - 7 \/5 W W W W 

(a) Which three of these vectors form an orthonormal basis for @3? 
Answer: , , and . 

(b) Write (1, 0, 0) as a linear combination of the three basis vectors 
you chose in part (a). (Use 0 as the coefficient of the vector that 
does not belong to the basis.) 

Answer: (1,0,0) 

b = and 

(6) Find all real numbers a such that the angle between the vectors 
2i-|-2j-|- ( 0 - 2 ) k  and 2i -|- ( a  - 
and . 

i w + 2i X + 6  y + C Z W  h ere Cl \/5 \ 2a 
, C 

Qlj -|- 2k is g. Answer: a 

7 

f 

f 

real valued functions on [0, 1] is 

g 

(7) Let (as) = x and g(a:) = 1:2 for 0 < x _< 1. Then the cosine of the angle 
between f and g in the inner product space C([0, 11) of all continuous 

Z where a Z . 
(8) Let (as) = as and (as) = cos try: for 0 < Hz: _< 1. In the inner product 

space C(10, 1]) of all continuous real valued functions on [0, 1] the cosine 
of s - 02 f of the angle between and is where a 

and C Z 

7 b 7 

C 

(9) Let f(a:) = 332 and g(;z:) = 1-ew where 0 < at < 1 and c is a constant. If 
, then f J_ g in the inner product space C([0, l]) of continuous 

real valued function on [0, l]. 
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(10) In R4 the subspace perpendicular to both (1,4,4, 1) and (2, 9, 8, 2) is 
the span of the vectors (-4,a, b, a) and (-b, a,a,  b) where a = 
and b = 

I f 
(11) A complex valued function f on the interval [-¢r,7r] is said to be 

SQUARE INTEGRABLE if f (a:)l2 do: oo. Let F([-7r,7r]) be the 
family of all square integrable complex valued functions on [-7r,7r] . 
This family is an inner product space under the usual pointwise oper- 
ations of addition and scalar multiplication and the inner product 
defined by 

< 

f Q ( 7 ) 
1 

2tr 

'ii 

'IT 

f g (so) (so) do 

for all f ,  g 6 .7E'(1-tr,7r]). Actually the preceding sentence is a lie: 
to be correct we should identify any two square integrable functions 
that differ only on a set of Lebesgue measure zero and work with the 
resulting equivalence classes. Then we have an inner product space. 
What we actually have here is a so-called semi-inner product. For the 
purposes of the current exercise, however, this correction turns out to 
be unimportant; ignore it. 

For each integer n (positive, negative, or zero) define a function 
eTL by 

Ina: e for t r<a3<7r .  

If m n, 

en 

eT(;c) 

(a) Then each belongs to .7E'([-7r,¢r]) and Ilene 
integer n. 

(b) ;é then (e,,,,e,,) = 

'f - 0, 
Now let (513) 1 or f 

0 
1 

_<a:< 
if 0 _<a:<7r. 

fOr every 

If 
If 

II 6 

f 

5 

f 
n 5 

7 

f e 

f 

(c) Then ( ,en} = . 
(d) n is odd, then < , n) = . 
(e) n is even but not zero, then < , n) = . 
(f) Write the sum of the middle eleven terms of the Fourier series for 

f in simplified form. Hint: Use problem 9 in this chapter. 

Answer: , e7;)e7; 

b Z 

e 

a + bsina: -|- csin3x + dsin5a3 where 

, C 7 and d 
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17.3 Problems 

one . 

0 for all y 6 V, then X = 0. 

X 

w w 

(buzz, y) 

(3) Prove that if V is a complex inner product space and T £(V) 
satisfies (Tz, z) = 0 for all Z e V, then T = 0. Hint. In the hypothesis 
replace Z first by X -|- y and then by X + iy. 

(4) Show that the preceding result does not hold for real inner product 
spaces. 

If .CU 

(1) Prove that if X 6 V and (x, y) 

(2) Let S, T : V -> W be linear transformations between real inner prod- 
uct spaces. Prove that if (Sv, W) = (Tv, > for all V e V and e W, 
then S = T. 

(5) Let V be a complex inner product space and S ,  T e £(V) .  Prove that 
if (Sx,x) = (Tx, x) for all X e V, then S = T. 

(6) Prove the Schwarz inequality 17.1.10. Hint. Let of = (y, y) and B = 
-(x, y) and expand flax + Byll2. This hint leads to a slick, easy, and 
totally unenlightening proof. Perhaps you can find a more perspicuous 

(7) [The polarization identity] and y are vectors in a complex inner 
product space, then 

What is the correct identity for a real inner product space? 

(8) Let M2,2(R) be the vector space of all 2 X 2 matrices of real numbers. 
Show that this space can be made into an inner product space by 
defining (A, B) := tr(AtB) for all A, B e M 

(9) Prove that for every real number 0 

Derive from this that cos 0 = -|- and sin H = 

(10) Let and y be vectors in an inner product space. Prove that 

IIX + 112 + IIX II 
Give a geometric interpretation of this result. 

(11) Show that the norm function II - II : V -> R on an inner product space 
is uniformly continuous. 

2 i(ll¢v+yll lx 2 - - - - 2 all +zllcv+zyll - Z I I H I - W l l  l- 2 

2,2lRl° 

€ i9  cos 0 -|- 'i sin H. 

_1 
2 

€ i9  'é49 1 
2i 

y y 2 2IIXII2 + 2llyll 2 

6 

€ i9  w 
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17.4 Answers to Odd-Numbered Exercises 

1 
0 
1 

(1) 4, QI, 2 + 12£ 

(3) 4, 2, 3, 5 

(5) (21) We iv, y 
(be 3, 0, 

(7) W 
(9) § 

(11) (a) 
(b) 
(c) 2 

(d) 
(G) 
(f) 

'i 
TI/IT 

0 

0 
1 2 2 2 
2'7r"37r '57r  
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Chapter 18 

ORTI-IONORMAL SETS 
OF VECTORS 

18.1 Background 

Topics: orthonormal sets of vectors, orthonormal bases, orthogonal com- 
plements, orthogonal direct sums, Gram-Schmidt orthonormalization, the 
QR-factorization of a matrix. 

Definition 18.1.1. A set B of vectors in an inner product space is 
ORTHONORMAL if X J_ y whenever X and y are distinct vectors in B and 
llxll = 1 for every X e B. The set B is a MAXIMAL ORTHONORMAL SET pro- 
vided that it is orthonormal and the only orthonormal set which contains 
B is B itself. 

Theorem 18.1.2. 

0. Na 

Let B = {e1, . . . ,e"} be an orthonormal set in an inner 
product space V .  Then the following are equivalent. 

(a) B is a maximal orthonormal set in V .  
(b) If (x,ek} = 0  f o r =  1, . . . ,  thenx= 
(c) The span ofB is all of V .  
( d )  IfX 6 V, then X = 2k=1<x, e":}ek. (the Fourier series for x.) 
(e) (x,y) = Ek=1(x,e"'}(ek,y) for all x, y e V. 
If) IIxII 2 = Ek=1l (x ,ek) l2  for every X e V. 
(go d i V  = n. 

139 
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Definition 18.1.3. An orthonormal set in an inner product space V that 
satisfies any (and hence all) of the conditions listed in the preceding theorem 
is called an ORTHONORMAL BASIS for V. In this case the scalars (x, ek),  that 
appear in Theorem 18.1.2 are the FOURIER COEFFICIENTS of X with respect 
to B. 

Definition 18.1.4. An n X n matrix of real numbers is an ORTHOGONAL 
MATRIX if its column vectors are an orthonormal basis for Rn. An n X n 
matrix of complex numbers is a UNITARY MATRIX if its column vectors are 
an orthonormal basis for CC" . 

Theorem 18.1.5 (QR-factorization). If A is an n X n matrix of real 
numbers, then there exist an orthogonal matrix Q and an upper triangular 
matrix R such that A = QR. If A is an n X n matrix of complex numbers, 
then there exist a unitary matrix Q and an upper triangular matrix R such 
that A = QR. 

(For a proof of the preceding theorem see [8], pages 425-427.) 

Definition 18.1.6. Let M and N be subspaces of an inner product 
space V. We say that the space V is the ORTHOGONAL DIRECT SUM of 
M and N if M -|- N = V and M J_ N. In this case we write 

V M N. ® 

Caution: Since the same notation is used for direct sums of vector spaces 
and orthogonal direct sums of inner product spaces, close attention should 
be paid to the context in which these concepts arise. For example, if M is 
the x-axis and N is the line y = as in R2, is it true that R2 = M N? Yes, 
if R2 is regarded as a vector space. No, if it is regarded as an inner product 
space. 

® 

18.2 Exercises 

1 

(1) Use the Gram-Schmidt procedure to find an orthonormal basis for the 
subspace of R4 spanned by W1 = (1, 0, 0, 0), W2 = (1, 1, 1, Of, and W3 = 
(1,2,0, 1). The basis consists of the vectors e1 = (1, 0, 0, 0), 82 = 
1 
- (0, 1, 1, b); and e3 = 1, -1, 1) where a = , b = 
a 
and C i . 

(b, 
C 

7 



Orthonorfrrzal Sets of Vectors 141 

(2) Let 774 = 774(10, II) be the vector space of polynomials of degree strictly 
less than 4 with an inner product defined by 

( ) p,q p q 
0 

(so) (23) do 

q for all p, 6 774. Let w0(a:) = 1, w1(a:) = buzz, w2(a3) = 562, and w3(a3) = 
323 for 0 < as < 1. Use the Gram-Schmidt process to convert the ordered 
basis {w0, w1, w2, w3} to an orthonormal basis {e0, e1, e2, e3} for 774. 

Answer: e0 (at) 

e t )  
82612) 

83(H2) 

\/E(ba: - 1) where a = 
(ex2 - be: + 1) where a = 

v-a(ba:3 - c132 + do: - 1) where 
b i and d 

and b 
and b 

a 

, C 7 

7 

3 
4 

(3) Find the QR factorization of A 

1 
QR = 

Cl C 

b Answer: A 
C 1 

b 
C C 

[ Q] 
Hg J where a 7 7 and 

(4) Let A 
0 0 1 
0 1 1 

1 l The Q R-factorization of A is A = QR 

where Q and R 

(5) Let A 

where Q 

The Q R-factorization of A is A = QR 

b -ab 
a Zab 

-b -ab 
and R 

3a 9a 
0 2b 
0 0 

pa 
b 

ab 
where Cl 

and b 
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18.3 Problems 

(1) Let {e1,e2, 
space V and X 

,e"} be a Finite orthonormal subset of an inner product 
6 V. Show that 

TL 

§jl(x,ek=)l IIxII 2 < 2 

k 1 

® 

Hint. Multiply out (x - Ek=1<X7 e"')e'*, X - Ek=1<X7 ek)ek). 

(2) Let M be a subspace of an inner product space V. 
(a) Show that M C M .  
(b) Prove that equality need not hold in (a) . 
(c) Show that if V is Finite dimensional, then M = M .  

(3) Let M and N be subspaces of an inner product space. Prove that 

(m+n)_|_ = mJ_ onJ_.  

(4) Let M be a subspace of a finite dimensional inner product space V. 
Prove that V = M M .  

(5) Give an example to show that the conclusion of the preceding problem 
need not hold in an infinite dimensional space. 

(6) Prove that if an inner product space V is the orthogonal direct sum 
M ® N of two subspaces M and N, then N = M .  

(7) Prove that if f is a linear functional on a finite dimensional inner prod- 
uct space V, then there exists a unique vector a e V such that 

f ( x l  (X, a) 

In 

X for every 6 V. 

(8) 

series 

beginning calculus, you found (by making use of the p-test) that the 
OO 

1 . • Z p converges. But you were not given a means of discover- 
k=1 

ing what the series converges to. Now you have enough machinery to 
accomplish this. 

We denote by L210, 2¢r] the vector space of all complex valued func- 
tions f defined on the interval [0, 2¢r] such that 

0 

27r 

lf(tll2 dt <oo.  
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(As in Exercise 11 of Chapter 17 this isn't quite correct: the members 
of L2 are technically equivalence classes of functions. For the purposes 
of this problem, use the preceding not-quite-right definition.) 

On the space L2[0, 2¢r] we define the following inner product 

f g ( 7 ) 
1 2'rr 

f 27T 0 (t)g(tl dt. 

For each integer n (positive, negative, or zero) define the function e" 
on [0, Z7r] by 

@"(HE) Ina: e 

fo r0<a:<27r .  

(a) Show that {eTL: n is an integer} is an orthonormal set in L2[0, Zfr] . 
In part (b) you may use without proof the following fact: for every 
function f in the inner product space $2 [0, Zfr] 

OO 

llfll 2 

Z o 
l(f,e')l 2 (*) 

That is, in L2 [0, 2¢r] the square of the length of a vector is the sum of 
the squares of its Fourier coefficients with respect to the orthonor- 
mal family given in part (a). This is the infinite dimensional version 
of Parseval 's formula. 

(b) Find the sum of the inf Mite series 
OO 1 

k2 Hint. Apply (*) to the 
k=1 

function f (iv) co. 

18.4 Answers to Odd-Numbered Exercises 

(1) \/5, 0, \/5 
(3) 5, 3, 4 

(5) 
1 1 
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Chapter 19 

QUADRATIC FORMS 

19.1 Background 

Topics: quadratic forms, quadric surfaces, positive (and negative) definite, 
positive (and negative) semidefinite, indefinite. 

> ¢ 

Definition 19.1.1. A symmetric matrix A on a real inner product space 
V is POSITIVE DEFINITE if (Ax, x) > 0 for every X go 0 in V. It is NEGATIVE 
DEFINITE if (Ax, x) < 0 for every X go 0 in V. It is POSITIVE SEMIDEFINITE 

if (Ax, x) _ 0 for every X 0 in V. It is NEGATIVE SEMIDEFINITE if 
(Ax ,  x) < 0 for every X 7é 0 in V. It is INDEFINITE if there are vectors X 

and y in V such that (Ax, x) > 0 and (Ay, y) < 0. Of course an operator 
on a finite dimensional vector space is positive definite, negative definite, 
or indefinite if its matrix representation is positive definite, etc. 

The following useful result (and its proof) can be found on page 250 
of 191 . 
Theorem 19.1.2. Let A be a symmetric n X n matrix of real numbers. 
Then the following conditions are equivalent: 

(a )  A is positive definite; 
lb)  X t A X  > 0 for every X 7é 0 in RTL; 
(c)  every eigenvalue A of A is strictly positive; 
(d l  every leading principal svbmatrix As, (k = 1, . . . ,n )  has strictly positive 

determinant, and 
(e) when A has been put in echelon form (without row exchanges) the pivots 

are all strictly positive. 

145 
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In X the preceding, the leading principal submatrifv As is the k k matrix 
that appears in the upper left corner of A. 

19.2 Exercises 

(1) Suppose that A is a 3 3 matrix such that (Ax, xl X 

33332 + 61:15:32 - 45131133 + 81325133 for all X 6 R3. Then A 

131 2 + 5582 la b 
b d 

L C e 

2 

C 

e 

f 
, e wheres= , b =  , c =  , d =  = = 

(2) A curve C is given by the equation 25132 - 72a3y-|- 23y2 = 50. What kind 
of curve is C? 
Answer: It is a(n) . 

(3) The equation 51:2 + 8a:y + 5y2 = 1 describes an ellipse. The principal 
axes of the ellipse lie along the lines y = and y = . 

(4) The graph of the equation 13132 - Say -|- 7y2 = 45 is an ellipse. The 
length of its semimajor axis is and the length of its sernirninor 
axis is . 

(5) Consider the equation 21:2 -|- 2y2 - 22 - Zxy + 4332 -|- 4yz = 3. 

7 and f 

1 

,w2 

(a) The graph of the equation is what type of quadric surface? 
Answer: 

(b) In standard form the equation for this surface is 

u2 + ,U2 + . 
(c) Find three orthonormal vectors with the property that in the coor- 

dinate system they generate, the equation of the surface is in stan- 
dard form. 

Answer: 
1 1 

W II 7 ), ( 7 7 0), and \/5 ( 1, 7 • 

(6) Determine for each of the following matrices whether it is positive def- 
inite, positive semidefinite, negative definite, negative semidefinite, or 
indefinite. 

2 
(a) The matrix -1 2 

-1 -1 

1 
1 is 

2 
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1 1 
(b) The matrix 1 

1 

is 

(7) Determine for each of the following matrices whether it is positive def- 
inite, positive semidefinite, negative definite, negative semidefinite, or 
indefinite. 

(a) 
\'1 

(be The matrix Q 

0 

2 3 
The matrix 2 5 4 is 

Q A n 

1 2 0 
2 6 -2 

-2 5 
0 -2 

0 1 2 2 

The matrix 1 0 1 
2 1 0 

(cl is 

(8) Let B 
2 2 4 
2 b 8 

iv A O 

For what range of values of b is B positive definite? 

Answer : 

11 1 _ 
_1 1 Cl 

(9) Let A = a For what range of values of a is A positive definite? 

Answer : 

19.3 Problem 

(1) You are given a quadratic form = a;c2 + by2 -|- ez2 + Zdazy -I- 
2ea:z-|- Zfyz. Explain in detail how to determine whether the associated 
level surface q(a:, y, z) = e encloses a region of finite volume in R3 and, if 
it does, how to find that volume. Justify carefully all claims you make. 
Among other things, explain how to use the change of variables theorem 
for multiple integrals to express the volume of an ellipsoid in terms of 
the lengths of the principal axes of the ellipsoid. 

q(w, y, z) 
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Apply the method you have developed to the equation 

11362 + by2 -|- 1122 + 4133; - 10:z:z + 4yz = 8. 

19.4 Answers to Odd-Numbered Exercises 

(1) 1, 3, -2, 5, 4, -3 

(3) -az, as 

(5) (a) hyperboloid of one sheet 
(b) -1, 1 
(Q) 1, -2, 1, -1, 1, 1 

(7) (al indefinite 
(b) positive definite 
(c) positive definite 

(9) a > 1  



Chapter 20 

OPTIMIZATION 

20.1 Background 

Topics: critical (stationary) points of a function of several variables; local 
(relative) maxima and minima, global (absolute) maxima and minima. 

Rn 
Definition 20.1.1. Let f : IR" -> R be a smooth scalar Held (that is, a 
real valued function on with derivatives of all orders) and p . The 
HESS1AN MATRIX (or SECOND DERIVATIVE MATRIX) of f at p, denoted by 

Hflp) ,  is the symmetric n n matrix X 

GR"  

Hf(pl 
i n  

<92 f ( )  
3$Ei 35I3j i=1j=1 

p Um( )]- p 

Theorem 20.1.2 (Second Derivative Test). Let p 
a smooth scalar field f (that is, a point where the gradient of f is zero). If 
the Hessian matrix Hf is positive definite at , then f has a local minimum 
there. If Hf is negative definite at , then f has a local maximum there. If 
Hf is indefinite at then f has a saddle point there. 

p 
p 

p, 

be a critical point of 

20.2 Exercises 

(1) Notice that the function f deeMed by f(;z:,y) = (x2 - Zeal cosy has a 
critical point (stationary point) at the point (l,  w). The eigenvalues of 
the Hessian matrix of f are and , so we conclude 
that the point (1, 71) is a (local minimum, local 
maximum, saddle point). 

149 
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as a 

f ( :u ,y )  = 21:2 -l-Zaiy-l-21:4-y4 

(2) Use matrix methods to classify the critical point of the function 

- by3 -|- 7y 

local maximum, local minimum, or saddle point. 

(a) The only critical point is located at 
(b) It is a 

2 -ily-l-5 

• 7 

f(x2 y, al my-I-3/2 

(3) Use matrix methods to classify the critical point of the function 
1 

I 5134 - + 3 

as a local maximum, local minimum, or saddle point. 

(a) The only critical point is located at l 
(b) It is a 

2 
.CUZ'*'Z -.CU 

7 7 . 

(4) Notice that the function f deeMed by f (x ,y)  = -1 -|- 4(e"' - as) - 
5:13 siny + $y2 has a critical point (stationary point) at the origin. Since 
the eigenvalues of the Hessian matrix of f are 
(both positive, both negative, of different signs) we conclude that the 
origin is a (local minimum, local maximum, 
saddle point). 

a 

f(56» y) 

(5) Use matrix methods to classify each critical point of the function 

= y 3 - § a : 3 - 2 y 2 + 2 a : 2 + y - 7  

as a local maximum, local minimum, or saddle point. 
Answer: (0, §) is a 

(0, ) is a 
( , §) is a 
( , ) is a . 

(6) Use matrix methods to classify each critical point of the function 

451:-ysinz for 0 <  

as a local maximum, local minimum, or saddle point. 
Answer: The critical points are (-1, which is 

; and (1, , which is a 
(local minimum, local maximum, saddle 

f w , y , 2 ) = = $ 2 y  z <  or 

7 7 

7 

point) . 
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(7) The function f defined by f(a:,y) = $z:2y2 - 256 - 2y has a sta- 
tionary point at l , l, At this stationary point f has a 

(local minimum, local maximum, saddle 
point) . 

20.3 Problems 

as 

f(vv,y>2) I $633/+ 22 

(1) Use matrix methods to classify each critical point of the function 

- 3:6 - y + Hz + 5 
a local maximum, local minimum, or saddle point. Justify your con- 

clusions carefully. 

(2) Let f(a:,y, z) = ;z:2 y - yeZ -|- 21: -|- Z. The only critical point of f is 
located at (-1, 1, 0). Use the second derivative test to classify this point 
as a local maximum, local minimum, or saddle point. State the reasons 
for your conclusion clearly. 

(3) Notice that the function f defined by f(;z:,y,z) = 3329 -|- Qxy -|- y - 
yez-1 -|- 21: -|- z -|- 7 has a critical point (stationary point) at (-2, 1, 1). 
Use the second derivative test to classify this point as a local maximum, 
local minimum, or saddle point. State the reasons for your conclusion 
clearly. 

(4) Explain in detail how to use matrix methods to classify each critical 
point of the function 

f(;v» y) 
.CU 

_ 1 2 1 
- -5a3y -|- - - y 

as a local maximum, local minimum, or saddle point. Carry out the 
computations you describe. 

20.4 Answers to Odd-Numbered Exercises 

1 
(1) -2, -1, local maximum 

(3) ( El ) 1 7 - 7  - 1 2 2 
(b) local minimum 

(5) saddle point, 1, local minimum, 1, local maximum, 1, 1, saddle point 

(7) 1, 1, saddle point 
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Chapter 21 

ADJOINTS AND TRANSPOSES 

21.1 Background 

Topics: adjoint of an operator, transpose of an operator, conjugate trans- 
pose. 

Definition 21.1.1. Let T: V -> W be a linear transformation between 
real inner product spaces. If there exists a linear map Tt :  W -> V that 
satisfies 

w 

) ( w v, (Tv ,  Tow)  

for all V 6 V and 6 W, then Tt is the TRANSPOSE of T. 

In connection with the definition above see Problem 1. 

Theorem 21.1.2. Let T : R" -> RM be a linear transformation. Then the 
transpose linear transformation T t  exists. Furthermore, the matrix repre- 
sentation [rt] of this transformation is the transpose of the matrix repre- 
sentation of T .  

Definition 21.1.4. 

Definition 21.1.3. Let V be a real inner product space and T be an 
operator on V whose transpose exists. If T = Tt, then T is SYMMETRIC. If 
T cornrnutes with its transpose (that is, if TTt = T t T )  it is NORMAL. 

If [ a ]  is an m x n  matrix, its CONJUGATE TRANSPOSE 
is the 77, X m matrix [ a ]  . 

155 
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Definition 21.1.5. Let T: V -> W be a linear transformation between 
complex inner product spaces. If there exists a linear map T* : W -> V that 
satisfies 

(Tv ,  ) ( w v, T*w 

for all v Q V and w Q W, then T* is the ADJOINT (or CONJUGATE TRANS- 
posE, or HERMITIAN CONJUGATE) of T. (In many places, T* is denoted by 
TH or by To.) 

Theorem 21.1.6. Let T : C" -> (lm be a linear transformation. Then the 
adjoint linear transformation T* exists. Furthermore, the matrix represen- 
tation [T*] of this transformation is the conjugate transpose of the matrix 
representation of T .  

Definition 21.1.7. Let V be a complex inner product space and T be an 
operator on V whose adjoint exists. If T = T*, then T is SELF-ADJOINT 
(or HERMITIAN). If T commutes with its adjoint (that is, if TT* = T * T )  
it is NORMAL. A matrix is NORMAL if it is the representation of a normal 
operator. 

Definition 21.1.8. Let V and W be inner product spaces. We make the 
vector space V ® W into an inner product space as follows. For V I 7  V2 e V 
and w1,w2 e W let 

( l V 1 » W 1 l »  ( V 2 » W 2 l )  = ( V 1 » V 2 )  + ( W 1 » W 2 ) -  

(It is an easy exercise to verify that this is indeed an inner product 
on V ® W.) 

21.2 Exercises 

(1) Let C([0, l], (I) be the family of all continuous complex valued functions 
on the interval [0, 11. The usual inner product on this space is given by 

f 

f ( 7 ) g 
1 

f g 

(bf. Then 

0 

Let (IS be a fixed continuous complex valued function on [0, l]. Define 
the operator Met on the complex inner product space C([0, 1],©l by 
MM ) 

m 
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(2) Let A 
3 - i 2 + Qi 

1 . Find Hermitian (that is, self-adjoint1 matri- 

ces B and C such that A 
1 

Answer: B = 

a = b = 
b 

40 
a co 

, C 7 

b-l-c7 
d and C 

and d 

B -|- ic. Hint. Consider A :|: A* . 

1 1 b -  1 -a 
a IN-ci 

CZ where 40 7 

7 

(3) Let 773 be the space of polynomial functions of degree strictly less than 3 
defined on the interval [0, l]. Define the inner product of two polynomi- 
als p, q e 773 by (p, q) = f01 p(t)q(t) dt. Then the matrix representation 
of the transpose of the differentiation operator D on the space 773 (with 

respect to its usual basis {1,t, t2}) is . Hint. 

The answer is not the transpose of the matrix representation of D. 

(4) Let V be a complex inner product space. Define an operator T:  VQBV -> 
V ® V by 

Then T*(u, v) 7 

T(x»y)  Z (y,-x)~ 

I. 

21.3 Problems 

(1) Let T : V -> W be a linear map between real inner product spaces. 
S : W -> V is a function that satisfies 

If 

(Tv ,  w (v, Sw) 

for all V 6 V and all w 6 W, then S is linear (and is therefore the 
transpose of T). 

(2) Prove Theorem 21.1.2. Show that, in fact, every linear map between 
finite dimensional real inner product spaces has a transpose. 

(3) Let T be a self-adjoint operator on a complex inner product space V. 
Prove that (Tx ,  x) is real for every X e V. 

(4) Let T be an operator on a complex inner product space whose adjoint 
T* exists. Prove that T*T = 0 if and only if T = 0. 
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(5) Let V be a complex inner product space and let Q25 be defined on the 
set Ql(V) of operators on V whose adjoint exists by 

W )  T* .  

H 

Show that if S, T 6 Ql(V) and a 6 (C, then (S -|- T)* = S* -|- T* and 
(0T)* = ET*.  Hint. Use Problem 5 in Chapter 17. 
Note: Similarly, if V is a real inner product space, Ql(V) is the set of 
operators whose transpose exists, and q25(T) := T*, then (15 is linear. 

(6) Let T be a linear operator on a complex inner product space V. Show 
if T has an adjoint, then so does T* and T** = T .  Hint: Use Problem 5 
in Chapter 17. ( ere T** means (T*l*.) 
Note: The real inner product space version of this result says that if 
T is an operator on a real inner product space whose transpose exists, 
then the transpose of T* exists and T** = T. 

(7) Let S and T be operators on a complex inner product space V. Show 
that if S and T have adjoints, then so does ST and (ST)* = T*S*. 
Hint. Use Problem 5 in Chapter 17. 
Note: The real inner product space version of this says that if S and 
T are operators on a real inner product space and if S and T both 
have transposes, then so does ST and (ST)* = T*S*. 

(8) Let A:  V -> V be an operator on a real inner product space. Suppose 
that At exists and that it commutes with A (that is, suppose AAt = 
AtA).  Show that kerA = her At. 

(9) Let A and B be Hermitian operators on a complex inner product 
space. Prove that AB is Hermitian if and only if AB = BA. 

(10) Show that if T:  V -> W is an invertible linear map between complex 
inner product spaces and both T and T-1 have adjoints, then T* is 
invertible and (T*)-1 = (T-1)*. 
Note: The real inner product space version of this says that if 
T:  V -> W is an invertible linear map between real inner product 
spaces and both T and T-1 have transposes, then Tt is invertible and 
(Ttl-1 Z (T-l)t. 

(11) Every eigenvalue of a self-adjoint operator on a complex inner prod- 
uct space is real. Hint. Let x be an eigenvector associated with an 
eigenvalue A of an operator A. Consider Allxll2. 
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(12) Let A be a self-adjoint operator on a complex inner product space. 
Prove that eigenvectors associated with distinct eigenvalues of A are 
orthogonal. Hint. Use problem II.  Let x and y be eigenvectors asso- 
ciated with distinct eigenvalues A and ,LL of A. Start your proof by 
showing that Mac, y) = ,u.(a:,y). 

21.4 Answers to Odd-Numbered Exercises 

(l) 
<l> 

(3) I 12 
0 

-24 -261 
30 30 
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Chapter 22 

THE FOUR FUNDAMENTAL 
SUBSPACES 

22.1 Background 

Topics: column space; row space, nullspace, left nullspace, lead variables 
and free variables in a matrix, rank, row rank and column rank of a matrix. 

Definition 22.1.1. A linear transformation T:  R" -> lR"" (and its asso- 
ciated standard matrix [TD have four fundamental subspaces: the kernels 
and ranges of T and Tt. Over the years a rather elaborate terminology has 
grown up around these basic notions. 

The NULLSPACE of the matrix [T] is the kernel of the linear map T. 
The LEFT NULLSPACE of the matrix [T] is the kernel of the linear map Tt. 
The COLUMN SPACE of [T] is the subspace of RM spanned by the column 

vectors of the matrix [T]. This is just the range of the linear map T. 
And finally, the ROW SPACE of [T] is the subspace of R" spanned by the 

row vectors of the matrix [T]. This is just the range of the linear map Tt. 
For a linear transformation T : CC" -> CM the terminology is the same. 

EXCEPT: in the preceding five paragraphs each appearance of must 
be replaced by a "T*" (and, of course, IR" by QC" and RI" by CM). 

ccTt77 

Definition 22.1.2. The ROW RANK of a matrix is the dimension of its row 
space and the COLUMN RANK of a matrix is the dimension of its column 
space . 

Proposition 22.1.3. The rank of a matrix A is the dimension of the 
largest square submatrix of A with nonzero determinant. 

161 
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Two useful facts that you may wish to keep in mind are: 

(i) row equivalent matrices have the same row space (for a proof see [6] , 
page 56); and 

(ii) the row rank of a matrix is the same as its column rank (for a proof 
see [6], page 72). 

Note that according to the second assertion the rank of a linear map T, the 
row rank of its matrix representation [T], and the column rank of [T] are 
all equal. 

Theorem 22.1.4 (Fundamental Theorem of Linear Algebra). If T 
is an operator on a #note dimensional complex inner product space, then 

kerT = (ranT*)J_. 

Corollary 22.1.5. If T is an operator on a #note dimensional complex 
inner product space, then 

kerT* = ( r a n T ) .  

Corollary 22.1.6. If T is an operator on a #note dimensional complex 
inner product space, then 

ranT = ( k e r T * ) .  

Corollary 22.1.7. If T is an operator on a #note dimensional complex 
inner product space, then 

ranT* = ( k e r T ) .  

Note: With the obvious substitutions of Tt for T*, the preceding theorem 
and its three corollaries remain true for finite dimensional real inner product 
spaces. 

22.2 Exercises 

(1) Let T : (23 -> (23 be the operator whose matrix representation is 

[T] 1 
_1 

-I-i 
Qi -6 + 5'£ 1 
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7 

(a) The kernel of T (the nullspace of [T]) is the span of 

{( 7 10)}. 

(b) The range of T (the column space of [T1) is the span of 

{(1, 0, ), (0, 1, )}- 

(c) The kernel of T* (the left nullspace of T*) is the span of 

{(3, )}- 

(d) The range of T* (the row space of [T1) is the span of 

{(10, 0, ), (0, 10, )}~ 

7 

(2) Find a basis for each of the four fundamental subspaces associated with 
the matrix 

1 0 1 
0 1 1 0 
1 2 0 1 1 2 

A 

(a) The column space of A is the plane in R3 whose equation is 
. I t  is the span of {(1,0, ), (0, 1, )}. 

(b) The nullspace of A is the span of {( , -1, ,0) , (  ,0 ,  0, 1)}. 
(c) The row space of A is the span of {(1,0, , 1), (0, ,1,0)}. 
(d) The left nullspace of A is the line in R3 whose equations are 

= = 0. It is the span of {( , , 1)}. 

'1 |», 0 1 
1 1 1 
1 r: 

2 2 -1 
(3) Let A = 6 -2 

10 5 -4 3 

(a) Find a basis for the column space of A. 
Answer: 

. 

{(1» 0, )» (0, 7 

(b) The column space of A is a plane in . What is its equation? 
Answer: 

(c) The dimension of the row space of A is 

R3 
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(d) Fill in the missing coordinates of the following vector so that it lies 
in the row space of A. 

(4, 7 6, 7 7 

(e) The dimension of the nullspace of A is . 
(f) Fill in the missing coordinates of the following vector so that it lies 

in the nullspace of A. 

7 1, , 1 , 1 , 1  

(4) Let T:  R5 -> R3 be defined by 

T ( v , w , a 2 , y , z ) = ( v  -|- + w - y , w + : u - y - z ) .  Hz: z,'u 

(a) Find the matrix representation of T .  

, L  

(b) The kernel of T (the nullspace of [T]) is the span of 

{( 7 0, 0), (0, 1, 0, 1, 0), (-1, 1, 0, 

(c) The range of T (the column space of [T]) is the span of 

{(1, 7 -1), (0, )}~ 

7 

1, 

1 )}- 

Geometrically this is a . 
(d) The range of Tt (the row space of [T]) is the span of 

{(1, 0, , 0 ,  1l>( 7 7 - 1 7  -1)}- 

(e) The kernel of Tt (the left nullspace of [TD is the span of 

{( )}- 1, 7 

7 

Geometrically this is a 

1 0 
1 2 

1 1 
7 

2 0 -1 
4 -2 -1 

-1 0 
-3 -2 

(5) Let A be the matrix 0 

2 3 
spaces associated with A. 

Find the following sub- 
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1, 

(a) The column space of A is the span of 

{(1, 0, -1/2, I, (0, 

(b) The row space of A is the span of 

{(1, 0, 7 0, ), (0, 1, 1, 

7 

7 of. 

)}~ 

(c) The nullspace of A is the span of 

{( 7 -1: 1: 0: O): (0, 
(1, 0, 0, 7 )}. 

1, 0, 7 0), 

(d) The nullspace of At is the span of 

{( 0), (-1/2, 7 , 1 ,  7 0, 1>}. 

1 
2 

5 0 (6) Let A 
1 

1 
0 

1, 

-2 -1 3 2 
4 2 -6 -4 

-10 -1 15 
3 -6 9 -4 . 
3 -6 -1 9 
0 0 2 -5 

(a) The nullspace of A is the span of 

{(2, 0, 0, 0), ( 
( 7 0, 

(b) The row space of A is the span of 

{(1, -2, 0, 7 -1/2), (0, 0, 

(c) The column space of A is the span of 

{(1» -2: 0: 7 1/2, iv (0, 0, 

(d) The left nullspace of A is the span of 

{(2, 0, -1, 1, 0, 0 ) , (  ,1, 0, 0, 0, 0), (-1/2, 0, 
( 7 0, -1/2, 0, 0, 1)}. 

7 

7 

1, 

0, 0, 1, 0), 
0, 1>}. 

7 

1, 7 

)}- 

7 

7 

1 I2)}~ 

1, 0, 0), 

(7) Let A | 
2 

2 4 3 
1 
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(a) Fill in coordinates of the following vector X so that it is perpendic- 
ular to the rowspace of A. Answer: X = (10, , l. 

(b) Fill in coordinates of the following vector y so that it is perpendic- 
ular to the columnspace of A. Answer: y = (3, ). 7 

(8) In this exercise we prove a slightly different version of the fundamental 
theorem of linear algebra than the one given in Theorem 22.1.4. Here 
we work with real inner product spaces and the scope of the result is 
not restricted to finite dimensional spaces, but we must assume that 
the linear map with which we are dealing has a transpose. 

Theorem 22.2.1 (Fundamental theorem of linear algebra). Suppose 
that V and W are arbitrary real inner product spaces and that the linear 
transformation T: V -> W has a transpose. Then 

kerT = ( r a n T t ) .  

We prove the preceding theorem. For each step in the proof give the appro- 
priate reason. Choose from the following list. 

DK 
DO 

DOC 
DR 
DT 

H 
PIP 

Definition of "Kernel" 
Definition of "Orthogonal" 
Definition of "Orthogonal Complement" 
Definition of "Range" 
Definition of "Transpose" 
Hypothesis 

Elementary Property of Inner Products 

C 

0 

Proof. We must show two things: (i) kerT (ran Tt)J- and (ii) 
(ranTt) C kerT. 

To prove (i) we suppose that as e kerT and prove that x e (ran Tt)J_. 
Let 'U be a vector in ran Tt. Then there exists a vector w in W such that 
'U = Ttw (reason: l. We compute the inner product of as and 'U. 

(buzz, U) = (at, T%w) 
= (Taz, w) (reason: 

= (0, w) (reason: 
(reason: 

From this we infer that J_ 'U (reason: 
x e (ran Ttl-L (reason: l. 

and 

as and consequently that 
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To prove the converse we suppose that Hz: 6 (ran Ttl-L and show that 
x 6 her T. We know that an J_ ran Tt (reason: and l. If w e W 
then the vector Ttw belongs to ran Tt (reason: ), so J: J_ Ttw for all 
w e W. Thus for all w e W 

0 (SU, Ttfw) 

(Tai, w) 
(reason: 

(reason: 

It follows from this that Tab 
(reason: l. 

0 (reason: ). That is, Q kerT as 

(9) The matrix 33 Z I 
lies on the parametrized curve r(t) 
Use Proposition 22.1.3. 

3/ has rank one if and only if the point (33, y ,  z )  

( , t ,  ) in R3. Hint. 

(10) Let A be the 3 X 4 matrix whose nullspace is the subspace of R4 
spanned by the vectors (l ,0, l ,0) and (0, 1, l ,0) .  Then the vectors 
( , , , go and (0, , , ) form an orthonor- 
mal basis for the row space of A. 

[ 1 
( I I )  Let T : R3 -> R2 be the linear transformation whose matrix represen- 

t t '  . 1 0 2 a 1on is 1 1 4 and let X (5, 4, -9). 

u X u 

u 

(a) Find 6 kerT and V 6 ran Tt such that -|- V. 

Answer: ( , , ) and V = ( , 
(b) Find 6 ranT and 6 her Tt such that Tx = -|- z. 

Answer: l l and l l. 
y Z y 

y 7 Z 7 

7 

22.3 Problems 

(1) Let T:  R5 -> R4 be a linear transformation whose matrix representa- 
tion is 

[T] 

1 2 0 3 
-2 -4 3 0 
-1 -2 3 -4 3 

2 3 -14 9 

1 

1 
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on II 

Gauss-Jordan reduction 
1 2 0 -5 3 
0 0 1 -3 2 
0 0 0 0 0 
0 0 0 0 0 

1 0 1 
0 1 1 

C :  0 0 0 
0 0 0 
0 0 0 

31 1 
0 
0 
0 

applied to [T] yields the matrix 

and applied to the transpose of [T] yields 

(a) From the matrices above we can read off the dimension of the range 
of T and write down a basis for it. Explain carefully. 

(b) From the matrices above we can read off the dimension of the 
range of the transpose of T and write down a basis for it. Explain 
carefully. 

(c) From the matrices above we can write down two equations that 
a vector (u, w, co, y, z) must satisfy to be in the kernel of T. 
Explain carefully. What are the equations? Also explain carefully 
how we obtain from these equations the dimension of the ker- 
nel of T and find a basis for it. Carry out the calculation you 
describe. 

(d) From the matrices above we can write down two equations that a 
vector (w, x, y, z) must satisfy to be in the kernel of the transpose 
of T. Explain carefully. What are the equations? Also explain care- 
fully how we obtain from these equations the dimension of the ker- 
nel of Tt and find a basis for it. Carry out the calculation you 
describe. 

(2) Let T:  R6 -> R3 be a linear transformation whose matrix representa- 
tion is 

"1 
[T] 3 r 2 0 2 

6 1 1 
10 1 5 

1 
1 

1 
2 
4 3 

7 
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Gauss-Jordan reduction applied to [T] yields the matrix B = 
F1 2 0 2 -1  1 1  

0 1 -5 1 -2 | , and applied to the transpose of [T] yields 
0 0 0 0 0 1 

- 1 0 2- 
0 1 1 
0 0 0 

C ' 0 0 0 ' 

0 0 0 
0 0 0 

(a) From the matrices above we can read off the dimension of the range 
of T and write down a basis for it. Explain carefully. 

(b) From the matrices above we can read off the dimension of the 
range of the transpose of T and write down a basis for it. Explain 
carefully. 

(c) From the matrices above we can write down two equations that a 
vector ('u.,v, w ,  ac, y, z) in R6 must satisfy to be in the kernel of T. 
Explain carefully. What are the equations? Also explain carefully 
how we obtain from these equations the dimension of the kernel of 
T and find a basis for it. Carry out the calculation you describe. 

(d) From the matrices above we can write down two equations that a 
vector (as, y, z) in R3 must satisfy to be in the kernel of the trans- 
pose of T. Explain carefully. What are the equations? Also explain 
carefully how we obtain from these equations the dimension of the 
kernel of Tt and find a basis for it. Carry out the calculation you 
describe. 

(3) Let T:  R6 -> R5 be the linear transformation whose matrix represen- 
tation is 

A [T] 

1 2 -1 -2 
0 0 0 1 
2 4 -2 -4 
0 0 0 -1 
3 6 -3 -6 

3 
1 

7 
1 
7 

0 
2 
4 
2 

8 



170 Exercises and Problems in Linear Algebra 

b 
You may use the following fact: the reduced row echelon forms of the 
augmented matrix [A | ] and of At are 

B 

2 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 0 0 
0 1 0 
0 0 1 
0 0 0 
0 0 0 

8 

0 
0 

361 -|- 262 - 63 
-261 -1- 62 -1- bg 

-261 + 63 
62 -|- 64 

-761 -|- 263 -|- 65 

and 

0 
0 
1 
0 
0 
0 

` 0 
1 
0 
0 
0 

_ 0 

1 
0 
0 
0 
0 
0 

1 
0 

0 
0 
0 
0 

7 
0 

0 
0 
0 

_ Q  . 
7 respectlvely. 

t 
u 

Suppose that 'u 
w 
y 

X 

Z 

(a) What are the free variables of the system Ax = 0 and which are 
the lead variables? How do you know? 

(be What is the rank of A? Why? 
(c) Write a general solution to the homogeneous equation Ax = 0 as 

a linear combination of vectors in R6 using the free variables as 
coefficients. Explain. 

(d) Explain how to find the dimension of and a basis for the kernel of 
T. Do so. 

(e) Explain how to find the dimension of and a basis for the range of 
T. Do so. 

(f) What conditions must b 

61 
62 

the vector 63 
64 
65 

nonhomogeneous equation Ax = b have solutions? 

satisfy in order that the 
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son Ax 

(g) Find, if possible, the general solution to the nonhomogeneous equa- 

1 1 -3 
2 
3 
3 

homogeneous equation plus a particular solution.) 
(ii) Explain how to find the dimension of and a basis for the range of 

Tt. Do so. 
(i) Explain how to find the dimension of and a basis for the kernel of 

Tt. Do so. 

. (Write your answer as a general solution to the 

(4) Prove the three corollaries to the fundamental theorem of linear 
algebra 22.1.4 for complex inner product spaces. 

22.4 Answers to Odd-Numbered Exercises 

(1) (a) 9-31, 3- tz  
(be 3, -2 
(c) -2, -1 
(d) -9-31, - 3 - i  

(dl 

1 

1 1 

(3) (a) 2, 
(b) Za: -|- y - z = 0 
(c) 2 
(dl 8, -22, 2, -8 
(G) 4 
(f) -4, 6 

(5) la) §= §= § 
(be 2, -1, -1 
IcI -2, 1, 0, 1 

1 l 3 
§' -§ '  -5 

(7) (21) -5: 0 
(b) 3, -3 

(9) 62, t3 

(11) (21) 6, 6, -3, -1, -2, -6 
(b) -13, -27, 0, 0 
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Chapter 23 

ORTI-IOGONAL PROJECTIONS 

23.1 Background 

Topics: orthogonal and unitary operators, orthogonal projections 

Definition 23.1.1. A linear operator T : V -> V on a real inner product 
space is ORTHOGONAL if it is invertible and Tt = T-1. A matrix is ORTHOG- 
ONAL if it is the representation of an orthogonal operator. An operator T on 
a complex inner product space V is UNITARY if it is invertible and T* = T-1. 
A matrix is UNITARY if it is the representation of a unitary operator. 

The definitions for orthogonal and unitary matrices given above differ 
from the ones offered in 18.1.4. In Problem 8 you are asked to show that in 
both cases the definitions are equivalent. 

Definition 23.1.2. An operator T on an inner product space V is an 
ISOMETRY if it preserves the distance between vectors. Equivalently, T is 
an isometric if lITxll = llxll for every x e V. 

Definition 23.1.3. Let V be an inner product space and suppose that it is 
the vector space direct sum of M and N. Then the projection EmnZ V -> V 
is an ORTHOGONAL PROJECTION if M J_ N (that is if V is the orthogonal 
direct sum of M and N ) .  

Proposition 23.1.4. A projection E on a complex inner product space V 
is on orthogonal projection if and only if E is self-adjoint. On a real inner 
product space a projection is orthogonal if and only if it is symmetric. 

For a proof of (the real case of) this result see exercise 4. 

173 
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Definition 23.1.5. We say that a linear operator T on an inner product 
space V is POSITIVE (and write T > 0) if (Tx, X) > 0 for all x e V. If 
S and T are two linear operators on V, we say that Q DOMINATES (or 
MAJORIZES) P if Q - P > 0. In this case we write P g Q. 

23.2 Exercises 

( I )  The matrix representation of the orthogonal projection operator tak- 

R3 ing onto the plane + y -|- = 0 is .CU Z 

(2) Find _ 1 
m 
'i 
m 

1-i 
m 

u in (u1,u2,u3) (C3 such that the matrix a vector 
-1 
m 
-¢ 
m 

1-'é 
m 

U1 

U2 is unitary. 
U3 

1 
u 7 b , c  

m 7 

spanned by ( - l , l , 0 , l )  and (0,l,1, ) 
and b 

Answer: (2-l-a1, 3-bi, c4-di) where a = 
d = , and n = . 

(3) The orthogonal projection of the vector (2,0, -1,3) on the plane 
1 R4 is ( l , a ,b ,a l  where 

a = = . The matrix that implements this orthogo- 
C -d -d 

-d e d e 
e d C d 

-d e d e 

e 

in 

1 
al projection is 5 where C 7 d 7 

7 

and 

e 

(4) Let E be a projection operator on a real inner product space. Below 
we prove (the real case of) Proposition 23.1.41 that E is an orthogonal 
projection if and only if E = Et. Fill in the missing reasons and steps. 
Choose reasons from the following list. 

(DK) 
(DL) 
(DO) 

(DOP) 

(DT) 

Definition of "kernel" . 
Definition of "linear" . 
Definition of "orthogonal" . 
Definition of "orthogonal projection" . 
Definition of "transpose" . 
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n 

y 

0 

(GPa) Problem 5 in chapter 5. 
(GPb) Problem 1 in chapter 10. 
(GPc) Problem 5 in chapter 17. 
(GPd) Problem 6 in chapter 21. 

(H1) Hypothesis that M J_ N. 
(H2) Hypothesis that E = Et. 

(PIP) Elementary property of Inner Products. 
(Ti) Theorem 10.1.2, part (i). 

(Tiii) Theorem 10.1.2, part (iii). 
(Tiv) Theorem 10.1.2, part (iv). 
(VA) Vector space arithmetic (consequences of vector 

space axioms, etc.) 

Let E = EMN be a projection operator on a real inner product 
space V = M ® N. Suppose first that E is an orthogonal projec- 
tion. Then M J_ N (reason: ). If x and y are elements in V, 
then there exist unique vectors 111, p , q e N such that 
x = m +  and y = p - l - q  (reason: 

(Ex, ) 
+ ) (reason: 

= ( + ) (reason: 
= (E ) (reason: 

) (reason: 

) + (  , ) (reason: 
) (reason: 

q 
q 

q 

6 M and n 
)~ Then 

' E I L P  

q n , p +  

(n,p-l-q 
( u p  n o  
0 <1 

q 
0 

= <E(m + n), p -I- 
= (Em + En, p 

+ (n, 

(reason: 

) 
(reason: 

(reason: 

) 
). 

From this we conclude that E = Et (reason: 

q n q  

p q 
p q 

(Ill, ) + (  7 ) 
(x, q) (reason: 

(x,E ) 
(x, -|- Eq (reason: 
(x,E 4-E > 
(x,E( -|- )) 
( x ,  E t t y )  (reason: 
( E t x ,  y (reason: 

(reason: 

) 
and 

and 

and 
and 

and 
and 

and 
and 
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( 7 ) n m  

III n 

III 

7 

In 
In 
In 0 

0 

Em 

7 

Conversely, suppose that E = Et. To show that M J_ N it is enough 
to show that III J_ n for arbitrary elements III e M and n e N. 

(En, (reason: and ) 
, Etm) (reason: 

(reason: ) 

(reason: and 

(reason: 

Thus J_ (reason: l. 
Note: Of course, the complex inner product space version of the pre- 
ceding result says that if E is a projection operator on a complex inner 
product space, then E is an orthogonal projection if and only if it is 
self-adjoint. 

(5) Let P be the orthogonal projection of R3 onto the subspace spanned 
To A I" '| 

1 
by the vectors ( l ,0 , l )  and ( l , l , -1) .  Then [P] = 6 

, C where a = , b = and . 
(6) Find the image of the vector b = (1, 2, 7) under the orthogonal pro- 

r 1 1 7 

jection of R3 onto the column space of the matrix A 

u 

u 

u 

son of 

V 

q 

u 

Let = (8,v§, W,-1, 1) and 
oral projection of u onto V is 

(1, 2, 0, -2). Then the orthogonal projec- 
and b = 

Answer: l , , l. 
(7) Let = (3,-1,1,4,2) and (1,2,-1,0,1). Then the orthogonal 

projection of onto V is ( , , , , ). 

(8) 8' = (1, -1, 0, 2, \/§). Then the orthog- 
v where a = and b = 

(9) Let = (5,4,3, 5) and V = 
u onto V is v where a = 

(10) Find the point q in R3 on the ray connecting the origin to the point 
(2,4, 8) that is closest to the point (1, 1, 1). 

l 
Answer: i 5 

(11) Let e1 = kg, -, -8 and 62 = (--, -,  be vectors in R3. Notice that 
{et, e2} is an orthonormal set. 

7 7 

2 
3 

1 
3 

2 
3 
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(a) Find a vector 83 whose first coordinate is positive such that 
B = { € 1 v € 2 7 € 3 }  is an orthonormal basis for R3. Answer: 
1 
3 (  7 7 m 

(b) Suppose that X is a vector in R3 whose Fourier coefficients with 
respect to the basis B are: (x,e1) = -2, {x,e2) = -1; and 
(x, e l  = 3. Then x = l , , ). 

(c) Let y be a vector in R3 whose Fourier coefficients with respect to 
B are 

(y, 61) 

(y, 62 ) 

(y, 63 ) 

\ / 8 - ;  

5-JE; 
3 + m + ? .  

and 

Then the length of the vector y is . 
(d) The orthogonal projection of the vector b = (0, 3, 0) onto the plane 

spanned by 81 and 62 is 3 l , , l. 
(e) The orthogonal projection of the vector b = (0, 3, 0) onto the line 

spanned by e3 is 3 ( , , l. 
(f) What vector do you get when you add the results of the projections 

you found in parts (d) and (elf Answer: l , , ). 

23.3 Problems 

(1) Prove that an operator T:  V -> V on a finite dimensional real inner 
product space V is orthogonal if and only if it is an isometric. Similarly, 
on a finite dimensional complex inner product space an operator is 
unitary if and only if it is an isometric. 

(2) Prove that an operator T:  V -> V on a finite dimensional real inner 
product space V is orthogonal if and only if TtT = I. What is the 
corresponding necessary and sufficient condition on a finite dimensional 
complex inner product space for an operator to be unitary? 

(3) Show that if an operator U on a complex inner product space is both 
Hermitian and unitary, then o(U) C {-1, l}. 
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(4) Let P and Q be orthogonal projections on a real inner product space. 
Show that their sum P -|- Q is an orthogonal projection if and only if 
PQ = QP = 0. Hint. Use Proposition 23.1.4. 

(5) Explain in detail how to find the matrix that represents the orthog- 
onal projection of R3 onto the plane Hz: -|- y - Zz = 0. Carry out the 
computation you describe. 

(6) Let P and Q be orthogonal projection operators on a real inner product 
space V. 
(a) Show that the operator PQ is an orthogonal projection if and only 

if P commutes with Q. 
(b) Show that if P commutes with Q, then 

ran(PQ) = ran P VW ran Q. 

Hint. To show that ramP O rank C ran(PQ) start with a vector 
in ran P O ran Q and examine PQy. 

y 

(7) Let P and Q be orthogonal projections on an inner product space V. 
Prove that the following are equivalent: 

(a) P S Q; 
(be lIPxll < lIQxll for all X e V; 
(c) ramP C ranQ; 
(dl QP = P; and 
(e) PQ = P. 
Hint. First show that (d) and (e) are equivalent. Then show that 
(a) => (b) => (c) => (d) => (a). To prove that (b) => (c) take an 
arbitrary element as in the range of P; show that lIQxll = llxll and 
that consequently ll(I - Q)xll = 0. To prove that (d) => (a) show that 
(I - P)Q is an orthogonal projection; then consider ll(I - P)QII2. 

(8) In 18.1.4 and 23.1.1 the definitions for unitary matrices differ. Show 
that they are, in fact, equivalent. Argue that the same is true for the 
definitions given for orthogonal matrices. 

23.4 Answers to Odd-Numbered Exercises 

1 
(1) 3 

2 
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(3) 3, 4, 3, 2 

(5) 5, 2, 1 
(7) 2 4 2 2 

(9) 4, 3 

(11) (a) 2, -1, 2 
(b) 1, -3, 2 
(c) 4 
(d) 1, 4, 1 
(Q) -2, 1, -2 
(f) 0, 3, 0 

1, 

_ _ _ _ ( ) _  
7 ' 7 '  7 '  ' 7  
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Chapter 24 

LEAST SQUARES 
APPROXIMATION 

24.1 Background 

Topic: least squares approximation. 

24.2 Exercises 

(1) Let A 

(a) Find an orthonormal basis {e1,e2,e3} for 
spans the column space of A. 

R3 such that {e1,e2} 

el = l(a, b, -6) 

e2 = i(b, Q, b) 

e3 = i(b, 

where a , b = , and n = . 
(b) To which of the four fundamental subspaces of A does 83 belong? 

Answer: 83 belongs to the 
(c) What is the least squares solution to Ax = 

Answer: SE = . 

of A. 
when ( 2,7)? b b 1, 

7 

181 
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(2) Find the best least squares fit by a straight line to the following data: 
l w h e n t =  , a : = 3 w h e n t  2 w h e n t = l ; a n d : c  33 1. 0; Hz: 3 

when t = 2. 
Answer: + as t. 

a 

(3) At times t = -2, -1, 0, 1, and 2 the data y = 4, 2, -1, 0, and 0, 
respectively, are observed. Find the best line to fit this data. Answer: 
y = C t + D w h e r e C =  a d D =  . 

(4) The best (least squares) line lit to the data: y = 2 at t = -1; y = 0 
b = -- - - t  where 

10 5 
a 

a t t = 0 , y = - 3 a t t = 1 ; y = - 5 a t t = 2 i s y  
and b = . 

(5) Consider the following data: y = 20 when t = -2; y = 6 when t 
y = 2 w h e n t = 0 ; y = 8 w h e n t = l , y = 2 4 w h e n t =  
parabola that best fits the data in the least squares sense. 
Answer: y = C -|- Dt -|- E152 where C = , D = 
E i . 

(6) Consider the following data: y = 2 when t = -1, y = 0 when t = 0; 
y = -3 when t = 1; y = -5 when t = 2. Find the parabola that best 
fits the data in the least squares sense. 
Answer: y = C -|- Dt -|- E152 where C = 
E i 

i 0. 

(8) Consider the following data: y = 4 at t = -1; y = 5 at t = 0; y = 9 at 
t i 1. 

(a) Then the best (least squares) line that fits the data is y = c -|- dt 
where c = and d = . 

(4, 5, 9) onto the column space 

of A = 1 0 is ( 
1 1 

(7) Find the plane 50z = a -|- bu -|- ev 
the following data: Z = 3 when u = 
v = 3 , z = 5 w h e n ' u , = 2 a n d v = 1 °  
Answer: a = , b = 

D 7 

that is the best least squares fit to 
l a n d ' u =  1 , z = 6 w h e n u  Oand 

, z = 0 w h e n  = 0  and 'LL 

= -L 
2. Find the 

7 

7 

(b) The orthogonal projection of 
I'1 _11  

b 

and 

and 

i i 7 7 . 
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1 
1 

(9) The best least squares solution to the following (inconsistent) system 
u = 

of equations 'U = 

u -|- U 

is 'LL and 'U 

0 

24.3 Problems 

1 
1 Carry out the computation you describe. 

0 

(1) Explain in detail how to use matrix methods to find the best (least 
squares) solution to the following (inconsistent) system of equations 

'U Z 

'U Z 

u -|- 'U 

(2) The following data y are observed at times t: y = 4 when t = -2, y = 3 
w h e n t = - L y : l w h e n t = 0 ; a n d y = 0 w h e n t = 2 .  

(a) Explain how to use matrix methods to find the best (least squares) 
straight line approximation to the data. Carry out the computation 
you describe. 

(b) Find the orthogonal projection of y = (4,3, 1,0) on the column 
space of the matrix 

1 -2 
1 -1 A i . 1 0 
1 2 

(c) Explain carefully what your answer in (b) has to do with part (a) . 
(d) At what time does the largest error occur? That is, when does the 

observed data differ most from the values your line predicts? 

24.4 Answers to Odd-Numbered Exercises 

( l )  (a) 1, 2, 3 
(b) left nullspace 
(c) 1, 2 

(3) -1, 1 

(5) 2, 1, 5 

(7) -6, 73, 101 
1 1 

9 -, - 
( ) 3 3 
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SPECTRAL THEORY OF INNER 
PRODUCT SPACES 
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Chapter 25 

SPECTRAL TI-IE()REl\/I 
FOR REAL INNER 
PRODUCT SPACES 

25.1 Background 

Topics: the spectral theorem for finite dimensional real inner product 
spaces. 

Definition 25.1.1. An operator T on a finite dimensional real inner prod- 
uct space with an orthonormal basis is ORTHOGONALLY DIAGONALIZABLE 
if there exists an orthogonal matrix that diagonalizes T. 

The following theorem (together with its analog for complex spaces) is 
the fundamental structure theorem for inner product spaces. It says that 
any symmetric operator on a finite dimensional real inner product space 
can be written as a linear combination of orthogonal projections. The coef- 
ficients are the eigenvalues of the operator and the ranges of the orthogonal 
projections are the eigenspaces of the operator. 

Theorem 25.1.2 (Spectral Theorem for Finite Dimensional Real 
Inner Product Spaces). Let T be a symmetric operator on a #nite 
dimensional real inner product space V, and A1, . . . ,As be the (distinct) 
eigenvalues of T .  For each j let My be the eigenspace associated with As and 
Et be the projection of V onto My along M1+- - °+Mj_1 +Mj+1 -I-~ ' -+Mk. 

187 
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Then T is orthogonally dtagonallzable, the elgenspaces of T are mutually 
orthogonal, each EJ is an orthogonal projection, and the following hold: 

(i) T ; A1E1 -|- - + AkEk, 
(ii) I=E1- l '° '° - l -Ek,  and 

(iii) EEG = 0 when i ,e j .  

25.2 Exercises 

(1) Let T be the operator on R3 whose matrix representation is 

I 
1-41CO 

too 
I 

011 I 
O

IIC
O

 
O

IIC
O

 

I I 
o

lly
 

I 
L

e
)l©

 
I I 

l\l©
 

let I~I 
I 

I 
Cell£IO

 [\l©
 

I 
L

o
w

: 

(a) Find the characteristic polynomial and minimal polynomial for T. 
Answer: e;r(A) = 

MTIAI I . 
(b) The eigenspace M1 associated with the smallest eigenvalue A1 is 

the span of (1, , l. 
(c) The eigenspace M2 associated with the middle eigenvalue A2 is the 

span of ( , , -1). 
(d) The eigenspace M3 associated with the largest eigenvalue A3 is the 

span of ( , 1, l. 
(e) Find the (matrix representations of the) orthogonal projections E1 , 

EQ, and E3 onto the eigenspaces Mi, MQ, and M3, respectively. 
1 b -C -C 

Answer: E1 = a a a E2 c a a 
m 

Cl a Cl c a a 

Cl a Cl 1 1 1 n 7 E3 

d d 
Cl -CL where a 1 7 b , c 7 d 

d 1 
2 d 

d -a Cl 

m , and n = . 
(f) Write T as a linear combination of the projections found in 

Answer: [T] = E2 -|- E3. 
(el- 

E1 -I- 

7 
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(g) Find an orthogonal matrix Q (that is, a matrix such that Qt = 
Q-1) that diagonalizes T. What is the associated diagonal form A 
of T? 

Answer: Q 7 
7 

C 0 

\/5 

and A um ,U where 
n 

II 6 

7 b , C 7 A 7 ,U 7 and u 

(2) Let T be the operator on R3 whose matrix representation is 

2 2 1 

_1 IJ 

Answer: E1 

(a) The eigenspace M1 associated with the smallest eigenvalue A1 is 
the span of (1, , l. 

(b) The eigenspace M2 associated with the middle eigenvalue A2 is the 
span of (1, , l. 

(c) The eigenspace M3 associated with the largest eigenvalue A3 is the 
span of (1, , l. 

(d) Find the (matrix representations of the) orthogonal projections E1 , 
EQ, and E3 onto the eigenspaces Mi, MQ, and M3, respectively. 

a -CL -b -a Cl 

a b -a 
b -a Cl 

1 
mn 

Cl 

b 

1 
E2 m 

a 
a 

a 
Cl 

c 

a a 1 1 n 7 b , C 

m 

Answer: Q 

d 
E 3 =  a a d w h e r e s =  

d d d 
, and n . 

(e) Write T as a linear combination of the projections found in (d). 
Answer: [T] = E1 -|- E2 -|- E3. 

(f) Find an orthogonal matrix Q (that is, a matrix such that Qt = Q-1) 
that diagonalizes T. What is the associated diagonal form A of T? 

-7 
7 

A i 

a 

We 
a 

We 
C 

We 
, C 

\/5 
0 

and A 

d 7 

of ,U where 
n 

II 6 

7 b 7 7 ,U 7 and u 

7 
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25.3 Problem 

(1) Let A 

(a) Does A satisfy the hypotheses of the spectral theorem 25.1.2 for 
symmetric operators on a Iinite dimensional real inner product 
space? Explain. 

(b) Explain how to find an orthogonal matrix that diagonalizes the 
matrix A. Carry out the computation you describe. 

(c) Explain in careful detail how to write the matrix A in part (be 
as a linear combination of orthogonal projections. Carry out the 
computations you describe. 

25.4 Answers to the Odd-Numbered Exercises 

(1) (a) A3 - 2A2 
(A + l)(A 

A + 2 (or (A + 1>(A 
1)(,\-2)) 

1 )O-2 ) ) ;  A3 -QA2 - A + 2  (or 

(b) 1, 1 
(c) 2, -1 
(dl 0, -1 
(Q) 1, 4, 2, 0, 3, 6 
(f) -1, 1, 2 
(g) 1, 3, 2, -1, 1, 2 



Chapter 26 

SPECTRAL THEOREM FOR 
COMPLEX INNER PRODUCT 

SPACES 

26.1 Background 

Theorem 26.1.2 (Spectral Theorem for Finite Dimensional Com- 
pl 

Topics: the spectral theorem for Ignite dimensional complex inner product 
spaces. 

Definition 26.1.1. An operator T on a finite dimensional complex inner 
product space with an orthonormal basis is UNITARILY DIAGONALIZABLE if 
there exists a unitary matrix that diagonalizes T. 

ex Inner Product Spaces). Let T be a normal operator on a finite 
dimensional complex inner product space V ,  and A1, . . . , As be the (distinct) 
eigenvalues of T .  For each j let My be the eigenspace associated with As and 
Et be the projection of V onto My along M1+- - ° + M j _ 1  +Mj+1 -I-~ ' - + M k .  
Then T is unitarily diagonalizable, the eigenspaces of T are mutually 
orthogonal, each EJ is an orthogonal projection, and the following hold: 

(i) T ; A1E1 -|- - ' • -|- As,Ek, 
(ii) I I E 1  -l- '° '-l-Ek, and 

(iii) E,~Ej = 0 when i go j .  

Theorem 26.1.3. Let T be an operator on a finite dimensional complex 
inner product space V .  Then the following are equivalent: 

191 
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(1 )  T is normal; 
(2)  T is unitarily diagonalizable; and 
(3)  V has an orthonormal basis consisting of eigenvectors of T .  

For a discussion and proofs of the preceding theorems 
[2], page 2501§'. or [3], page 2841 

see, fOr example, 

26.2 Exercises 

(1) Let A 2 H . 

7 5 7 

1 -I-'i and E2 

(a) Use the spectral theorem 26.1.2 to write A as a linear combination 
of orthogonal projections. 
Answer: A = 0E1 -|- BE2 where a = 
1 2 -1 - ii 1 F 1 
3 

(b) Find a square root of A. 
1 Answer: \ A = g [ 

. 

E1 

4 1 -I-'i . 

(2) Let T be the operator on (22 whose matrix representation is u 
(a) The eigenspace VI associated with the eigenvalue -i 

(1, l. 
(b) The eigenspace VI associated with the eigenvalue i 

(1, l. 

is the span of 

is the span of 

(c) The (matrix representations of the) orthogonal projections E1 and 
r n AS 

E2 onto the eigenspaces VI and VI, respectively, are E1 7 

and E2 where Cl and b 

(d) Write T as a linear combination of the projections found (c). 
Answer: [T] = E1 + EQ. 

in 
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II 6 

(e) A unitary matrix U that diagonalizes [T] is where 

and b = . The associated diagonal form A = U* [T]U 

of [T] is 1 
1 l 1 - i  

( 3 ) L @ t n = 3  'i 44-2£ 
- i 

44-2£ 
1 1 i 

44-2£ I 
. 

(a) The matrix N is normal because NN* = N*N J a b b 
b a b where 
A A 

$2 

a = and b = . 
(b) Thus according to the spectral theorem 26.1.2 N can be written as a 

linear combination of orthogonal projections. Written in this form 
N A1E1 -|- A2 E2 where A1 I 

Cl a a b -a 
, E 1 = a a a  a n d E 2 =  b 

Cl a a b 

7 

1 7 1 Cl 

a Cl 

a Cl 

where Cl and b 
a -b -C 

(c) A unitary matrix U that diagonalizes N is a . where 
n d 

1 
201 

II 6 

7 b , C 7 and d The asso- 

c i t e d  diagonal form A = U*NU of  N is 

(4) Let T be an operator whose matrix representation is u 
(a) Regarded as an operator on R2 is T triangulable? 

operator on R2 is it diagonalizable? . 
(b) Show that T regarded as an operator on Q2 is diagonalizable by 

finding numbers and d such that the matrix S = f-f)  -OT 

invertible and s-1T5 is diagonal. 
Answer: C = and d = 

C 

. A s  an 

is 
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(c) Show that despite being diagonalizable (as an operator on (C2) T 
is not normal. 

Answer: TT* T*T. 

(d) Explain briefly why the result of part (c) does not contradict 
Theorem 26.13. 

(5) Let T be the operator on (23 
8 - 1  

-54-21 
6 . 

-2-41, 

5 21 
8 i 

-44-2i  

2 +4i 
-44-2i 
14-1-21 

whose matrix representation is 

(a) Find the characteristic polynomial and minimal polynomial for T. 
Answer: CT(Al = . 

WLTIAI I . 
(b) The eigenspace M1 associated with the real eigenvalue A1 is the 

span of (1, , l. 
(c) The eigenspace M2 associated with the complex eigenvalue A2 with 

negative imaginary part is the span of (1, , l. 
(d) The eigenspace M3 associated with the remaining eigenvalue A3 is 

the span of (1, , l. 
(e) Find the (matrix representations of the) orthogonal projections E1 , 

EQ, and E3 onto the eigenspaces Mi, MQ, and M3, respectively. 
1 -b be 1 b 
b Cl -c E2 -b a 

-be -C d 
Answer: E1 

1 1 I 1 n 

1 7 , c  7 , e  

m n 7 

l 1 -b -b 
b a a where a = 

P b Cl a 
, and p = . 

(f) Write T as a linear combination of the projections found in (e). 
Answer: [T] = E1 + E2 -|- E3. 

(g) Find a unitary matrix U which diagonalizes T. What is the asso- 
ciated diagonal form A of T? 

7 
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Answer: U 

a 
\ b e  
d 

\ b e  
_ bd 

\ b e  
, C 

I" 
| g

.§
l 

|(» 
l.l@

 
II 

P 
*-

. 

and A 

on
 II 7 A 

6 

d 

a = , b = 
and I/ i . 

(h) The operator T is normal because TT* 
a -be 260 
be Cl -2b 

-Zinc -2b d 
where Cl 7 b 

,U where 
n 

7 ,U 7 

T*T 

, C 7 and 

-|- Zi 

2 
1 

2 4-Zi 
5 i 

(6) Let T be the operator on (23 whose matrix representation is 
5 2 - i O - f; 7 1 I _ . § 5 - 'L 

2 -|- Zi 

Answer: E1 

(a) Find the characteristic polynomial and minimal polynomial for T. 
Answer: c;r(A) = . 

MTIAI I . 
(b) The eigenspace M1 associated with the real eigenvalue A1 is the 

span of (1, , l. 
(c) The eigenspace M2 associated with the complex eigenvalue A2 with 

negative imaginary part is the span of l , , -1). 
(d) The eigenspace M3 associated with the remaining eigenvalue A3 is 

the span of ( , -1, l. 
(e) Find the (matrix representations of the) orthogonal projections E1 , 

EQ, and E3 onto the eigenspaces Mi, MQ, and M3, respectively. 
a Cl a b b b 
Cl Cl CL E2 I b E3 I 

n a Cl a b 

1 
m 

1 1 1 C C , 
C c 

1 
6 

where a 7 b , C 7 d 7 

e 7 m 

as a 

, and n = . 
(f) Write T linear combination of the projections found in (e). 

Answer: [T] = E1 -|- E2 -|- E3. 
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(g) Find an orthogonal matrix Q (that is, a matrix such that Qt = 
Q-1) that diagonalizes T. What is the associated diagonal form A 
of T? 

Answer: Q 

II 6 

7 b 

7 
7 
, C 

0 

JE 
7 

C 

and A 

A 7 M 7 

um ,U where 
n 

and 1/ Z 

26.3 Problems 

(1) Let N be a normal operator on a finite dimensional complex inner 
product space V. Show that lINxll = jIN*xll for all x e V. 

(2) Let N be a normal operator on a complex finite dimensional inner 
product space V. Show that if Al, . . . , As are the eigenvalues of N, then 
X, . . . , are the eigenvalues of N*. 

X 

(3) Let T be as in exercise 4. Show by direct computation that there is no 
D. AS 

invertible 2 2 matrix S = of real numbers such that S-ITS 

is upper triangular. 

26.4 Answers to Odd-Numbered Exercises 

) (a) 
(b) 

> 4 , - 1 + £ >  7 

-12,5 

(3) (a) 

(1 1 1 1 -  2 
1 
8 2 
3 '  3 

1 2 l _ 
3 

1 1 1 
0 
0 0 

+ (b) 2, 3 i, 7 

1 -I-i 0, 
1 + 'I 

(5) (a) XI - 5A2 + SA - 6 (or (AS - QA + 2>(A 
(AS - QA + 2)(A - 3>) 

(b) i, -Qi 
(c) -QL, 0 

'L 

3)); >3 - 5A2 + SA - 6 (or 
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(d) i, ¢ 
(Q) 1, to, 2, 4, 0, 6, 2, 3 
(f) 3, 1 - ¢ ,  1+'£ 
(g) 1 7 2 7 3 7 ' 7 0 7 3 7  1 -  
(h) 19, 7, i, 40 

1 + 
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INDEX 

,_{(x,y) (angle between X and y), 25, 
133 

M ® N (direct sum of subspaces), 40 
V ® W (external direct sum of vector 

spaces), 40 
V/M (quotient of V by M), 41 
X - y (inner product of X and y), 25, 

131, 132 
M J_ N (two sets are orthogonal), 133 
X J_ y (two vectors are orthogonal) , 

133 
M < V (M is a subspace of V), 39 
V =~ W (V and W are isomorphic) , 

63 
(x,y) (inner product), 131 
[T] (matrix representation of T), 76 
[A, B] (commutator of A and B), 3 
[ac] (equivalence class containing x), 

41 
TS (notation for composition of 

linear maps), 62 
(x, y) (inner product of X and y), 25, 

132 
II:z:ll (norm of a vector x), 132 
At (transpose of A), 4 
ML (the orthogonal complement 

of m),  133 

action 
of a matrix, 11 

additive 
inverses, 33 

adjoint 
of a linear map, 156 

angle, 25, 133 
annihilating polynomial, 94 
associative, 33 

basis, 55 
orthonormal, 140 
standard, 55 

bijective, 61 
bounded function, 40 

C" 
as an inner product space, 132 

C([a, bl) 
as an inner product space, 133 

Cauchy-Schwarz inequality, 25, 133 
Cayley-Hamilton theorem, 94 
characteristic polynomial, 89 
cofactor, 13 
column 

rank, 161 
column index, 3 
column space, 161 
combination 

linear, 49 
commutative, 33 

diagram, 71 
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commutator, 3 
commute, 3, 71 
complement 

orthogonal, 133 
complementary subspaces, 40 
lm Z (imaginary part of a complex 

number), 127 
conjugate 

Hermitian, 156 
linear, 132 
transpose, 156 

of a linear map, 156 
of a matrix, 155 

continuous 
uniformly, 133 

continuously differentiable, 64 
cross product, 25 

definite 
negative, 145 
positive, 145 

dependence 
linear, 50 

determinant, 12 
det A (determinant of A), 12 
diagonal matrix, 93 
diagonalizable, 94 

conditions to be, 95 
orthogonally, 187 
part of an operator, 116 
unitarily, 191 

diagonalizing matrix, 94 
diagram, 71 

commutative, 71 
differentiable 

continuously, 64 
differential equations, 107 
dimension, 56 
dim V (dimension of V), 56 
direct sum 

external, 40 
internal, 40 
orthogonal, 140 

dominate, 174 

EMN (projection along M onto N), 
83 

eigenspace, 89 
generalized, 116 

eigenvalue, 89 
eigenvector, 89 
electrical networks 

problem on, 54 
equivalent 

row, 12 
even function, 43 
exact sequence, 69 
expansion 

Laplace, 13 
external direct sum, 40 

factorization 
QR-, 140 

finite dimension, 56 
first isomorphism theorem, 72 
Fourier 

coefficients, 140 
series, 139 

function 
even, 43 
odd,43 
square integrable, 135 
uniformly continuous, 133 

functional 
linear, 61 

fundamental theorem of linear 
algebra, 162, 166 

generalized eigenspace, 116 

Hermitian 
conjugate, 156 
operator, 156 

Hessian matrix, 149 

Iv (identity operator on V), 62 
identity 

additive, 33 
matrix, 4 

In (n X n identity matrix), 4 
identity map, 62 
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indefinite, 145 
independence 

linear, 50 
index 

column, 3 
row, 3 

inequality 
(Cauchy-lSchwarz, 133 

infinite dimensional, 56 
injective, 61 
inner product, 25, 131 

space 
C" as a, 132 
R" as a, 132 
C([0,bi) as a, 133 
Z2 as a, 132 

integrable, 40 
internal direct sum, 40 
inverse 

additive, 33 
left, 63 
right, 63 

invertible, 63 
isometric, 173 
isomorphic, 63 
isomorphism, 63 

kerT (the kernel of T), 62 
kernel, 62 

£(V) 
linear operators on V, 62 

QW, W) 
linear maps between vector 

spaces, 62 
Z2 

as an inner product space, 132 
square summable sequences, 132 

Laplace expansion, 13 
leading principal submatrix, 146 
left 

inverse, 7, 63 
nullspace, 161 

length, 25 
Lie bracket, 3 
linear, 61 

combination, 49 
trivial, 49 

conjugate, 132 
dependence, 50 
functional, 61 
independence, 50 
map, 61 

adjoint of a, 156 
conjugate transpose of a, 156 
Hermitian conjugate of a, 156 
transpose of a, 155 

operator, 62 
sesqui-, 132 
transformation, 62 

majorize, 174 
map 

linear, 61 
Markov matrix, 107 
matrix 

conjugate transpose of a, 155 
diagonal, 93 
diagonalizing, 94 
Hessian, 149 
Markov, 107 
nilpotent, 115 
normal, 156 
notation for, 3 
orthogonal, 140, 173 
representation of an linear map, 

76 
second derivative, 149 
standard, 76 
symmetric, 4 
transpose of a, 4 
unitary, 140, 173 
upper triangular, 4 

maximal 
linearly independent set, 57 
orthonormal set, 139 

minimal polynomial, 94 
existence and uniqueness of, 99 

minimal spanning set, 57 
minor, 13 
manic polynomial, 94 
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negative 
definite, 145 
semidefinite, 145 

networks 
problem on, 54 

nilpotent, 95, 115 
part of an operator, 116 

nonsingular, 13 
norm, 25, 132 
normal 

matrix, 156 
operator, 155, 156 

nullity, 62 
nullspace, 62, 161 

left, 161 

odd function, 43 
one-to-one, 61 

correspondence, 61 
onto, 61 
operator 

adjoint of an, 156 
diagonalizable part of an, 116 
Hermitian, 156 
linear, 62 
nilpotent, 115 
nilpotent part of an, 116 
normal, 156 
orthogonal, 173 
positive, 174 
self-adjoint, 156 
symmetric, 155 
transpose of an, 155 
unitary, 173 

orthogonal, 133 
complement, 133 
diagonalization, 187 
direct sum, 140 
matrix, 140, 173 
operator, 173 
projection, 173 

orthonormal, 139 
basis, 140 

perpendicular, 133 
pivoting, 11 

point spectrum, 89 
polarization identity, 136 
polynomial 

annihilating, 94 
characteristic, 89 
minimal, 94 

existence and uniqueness of, 
99 

rnonic, 94 
positive 

definite, 145 
operator, 174 
semidefinite, 145 

principal subrnatrix, 146 
product 

cross, 25 
inner, 25, 131 
of vector spaces, 40 

projection 
along one subspace onto 

another, 83 
orthogonal, 173 

Q R-factorization, 140 
quotient 

map 
for vector spaces, 72 

theorem 
for vector spaces, 72 

vector space, 41 

Rn 
as an inner product space, 132 

ranT (the range of T), 62 
range,62 
rank 

column, 161 
of a linear map, 62 
of a matrix, 76 
row, 161 

Re Z (real part of a complex 
nurnnber), 127 

representation 
matrix, 76 

Riemann integrable function, 40 
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right 
inverse, 7, 63 

TOW 

equivalent matrices, 12 
operations, 11 
rank, 161 

row index, 3 
row space, 161 

scaling, 11 
Schwarz inequality, 25, 133 
second derivative 

matrix, 149 
test, 149 

self-adjoint 
operator, 156 

semidefinite 
negative, 145 
positive, 145 

sequence 
exact, 69 

sesquilinear, 132 
short exact sequence, 69 
o ( T )  (spectrum of T), 89 
similar, 93 
singular, 13 
space 

vector, 33 
span, 49 
spanA (the span of the set A), 50 
spectral mapping theorem, 89 
spectral theorem 

for finite dimensional complex 
inner product spaces, 191 

for finite dimensional real inner 
product spaces, 187 

for finite dimensional vector 
spaces, 101 

spectrum, 89 
square integrable function, 135 
square summable, 132 
standard 

basis for R", 55 
matrix for a linear map, 76 

submatrix 
leading principal, 146 

subspace, 39 
complementary, 40 

sum 
external direct, 40 
internal direct, 40 

summable 
square, 132 

surjective, 61 
swapping, 11 
symmetric 

matrix, 4 
operator, 155 

system 
of differential equations, 107 

trace, 4 
t r A  (trace of A), 4 
transformation 

linear, 62 
transpose 

conjugate, 156 
of a matrix, 4 
of an operator, 155 

triangulable, 94 
conditions to be, 94 

triangular 
upper, 4 

trivial 
linear combination, 49 

uniformly continuous, 133 
unitary 

diagonalization, 191 
matrix, 140, 173 
operator, 173 

upper 
triangular, 4 

upper triangular, 94 

vector 
space, 33 

complex, 33 
real, 33 
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