Click for details." />
Buy a Full Access Account and Enjoy Unlimited Download! Click for details.

The Dual of L∞(X,L,λ), Finitely Additive Measures and Weak Convergence: A Primer

$20.00
The Dual of L∞(X,L,λ), Finitely Additive Measures and Weak Convergence: A Primer
Buy a Full Access Account and Enjoy Unlimited Download! Click for details.

The Dual of L∞(X,L,λ), Finitely Additive Measures and Weak Convergence: A Primer

$20.00

(SpringerBriefs in Mathematics) 1st ed. 2020 Edition 

by John Toland (Author) 

In measure theory, a familiar representation theorem due to F. Riesz identifies the dual space Lp(X,L,λ)* with Lq(X,L,λ), where 1/p+1/q=1, as long as 1 ≤ p<∞. However, L(X,L,λ)* cannot be similarly described, and is instead represented as a class of finitely additive measures.

This book provides a reasonably elementary account of the representation theory of L(X,L,λ)*, examining pathologies and paradoxes, and uncovering some surprising consequences. For instance, a necessary and sufficient condition for a bounded sequence in L(X,L,λ) to be weakly convergent, applicable in the one-point compactification of X, is given.

With a clear summary of prerequisites, and illustrated by examples including L(Rn) and the sequence space l, this book makes possibly unfamiliar material, some of which may be new, accessible to students and researchers in the mathematical sciences.

Year:
2020
Pages:
104
Language:
English
Format:
PDF
Size:
2 MB
ISBN-10:
3030347311
ISBN-13:
978-3030347314
ASIN:
B083GJQX2P